The Multiscale Hybrid Method with a Localized Constraint. I. A Modified Control Volume Function for the Hybridized Mass and Momentum Equations

Authors

  • M. Bakumenko Taras Shevchenko National University of Kyiv
  • V. Bardik Taras Shevchenko National University of Kyiv
  • D. Nerukh Aston University

DOI:

https://doi.org/10.15407/ujpe68.8.517

Keywords:

molecular dynamics, multiscale method, control volume function, hydrodynamic equations

Abstract

A new hybrid multiscaling model has been developed on the basis of the modified control volume function. Following the two-phase analogy of the same substance, the continuum and particle representations are coupled together in the framework of the mass and momentum conservation laws. The new functional form of the control volume function is elaborated by using the continuum discretization principle based on the Delaunay triangulation. The derived mass and momentum equations possess the invariant form for both micro-scale particle and large-scale continuum representations.

References

M.P. Allen, D.J. Tildesley. Computer Simulation of Liquids (Oxford university press, 2017).

https://doi.org/10.1093/oso/9780198803195.001.0001

W.A. Curtin, R.E. Miller. Atomistic/continuum coupling in computational materials science. Model. Simul. Mat. Sci. Eng. 11 (3), R33 (2003).

https://doi.org/10.1088/0965-0393/11/3/201

D. Davydov, J.P. Pelteret, P. Steinmann. Comparison of several staggered atomistic-to-continuum concurrent coupling strategies. Comput. Methods Appl. Mech. Eng. 277, 260 (2014).

https://doi.org/10.1016/j.cma.2014.04.013

E. Smith. On the Coupling of Molecular Dynamics to Continuum Computational Fluid Dynamics (School of Mechanical Engineering, 2013).

P. Espanol, M. Revenga. Smoothed dissipative particle dynamics. Phys. Rev. E 67 (2), 026705 (2003).

https://doi.org/10.1103/PhysRevE.67.026705

R. Eymard, T. Gallou¨et, R. Herbin. Finite volume methods. Handb. Numer. Anal. 7, 713 (2000).

https://doi.org/10.1016/S1570-8659(00)07005-8

M.R. Flannery. D'Alembert-Lagrange analytical dynamics for nonholonomic systems. J. Math. Phys. 52 (3), 032705 (2011).

https://doi.org/10.1063/1.3559128

M.R. Flannery. The enigma of nonholonomic constraints. Am. J. Phys. 73 (3), 265 (2005).

https://doi.org/10.1119/1.1830501

I.R. Gatland. Nonholonomic constraints: A test case. Am. J. Phys. 72 (7), 941 (2004).

https://doi.org/10.1119/1.1701844

H. Goldstein, C. Poole, J. Safko. Classical mechanics. American J. Phys. 70, 782 (2002).

https://doi.org/10.1119/1.1484149

N.G. Hadjiconstantinou. Hybrid atomistic-continuum formulations and the moving contact-line problem. J. Comput. Phys. 154 (2), 245 (1999).

https://doi.org/10.1006/jcph.1999.6302

N.G. Hadjiconstantinou, A.T. Patera. Heterogeneous atomistic-continuum representations for dense fluid systems. Int. J. Mod. Phys. C 08 (04), 967 (1997).

https://doi.org/10.1142/S0129183197000837

J.H. Irving, J.G. Kirkwood. The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics. J. Chem. Phys. 18 (6), 817 (1950).

https://doi.org/10.1063/1.1747782

J. Hu, I.A. Korotkin, S.A. Karabasov. A multi-resolution particle/fluctuating hydrodynamics model for hybrid simulations of liquids based on the twophase flow analogy. J. Chem. Phys. 149 (8), 084108 (2018).

https://doi.org/10.1063/1.5040962

V. Jagota et al. Finite element method: An overview. Walailak J. Sci. Tech. 10 (1), 1 (2013).

N. Nangiaad, H. Johansen, N. Patankar, B. Neelesh ad P. Amneet. A moving control volume approach to computing hydrodynamic forces and torques on immersed bodies. J. Comput. Phys. 347, 437 (2017).

https://doi.org/10.1016/j.jcp.2017.06.047

S. Karabasov et al. Multiscale modelling: Approaches and challenges. Philos. Trans. R. Soc. A 372 (2021), 20130390 (2014).

https://doi.org/10.1098/rsta.2013.0390

I. Korotkin et al. A hybrid molecular dynamics/fluctuating hydrodynamics method for modelling liquids at multiple scales in space and tim. J. Chem. Phys. 143 (1), 014110 (2015).

https://doi.org/10.1063/1.4923011

I.A. Korotkin, S.A. Karabasov. A generalised Landau-Lifshitz fluctuating hydrodynamics model for concurrent simulations of liquids at atomistic and continuum resolution. J. Chem. Phys. 149 (24), 244101 (2018).

https://doi.org/10.1063/1.5058804

Ju Li, Dongyi Liao, Sidney Yip. Coupling continuum to moleculardynamics simulation: Reflecting particle method and the field estimator. Phys. Rev. E 57 (6), 7259 (1998).

https://doi.org/10.1103/PhysRevE.57.7259

T. Liszka, J. Orkisz. The finite difference method at arbitrary irregular grids and its application in applied mechanics. Comput. Struct. 11 (1-2), 83 (1980).

https://doi.org/10.1016/0045-7949(80)90149-2

A. Markesteijn et al. Concurrent multiscale modelling of atomistic and hydrodynamic processes in liquids. Philos. Trans. R. Soc. A 372 (2021), 20130379 (2014).

https://doi.org/10.1098/rsta.2013.0379

X.B. Nie et al. A continuum and molecular dynamics hybrid method for micro-and nano-fluid flow. J. Fluid Mech. 500, 55 (2004).

https://doi.org/10.1017/S0022112003007225

S.T. O'connell, P.A. Thompson. Molecular dynamicscontinuum hybrid computations: A tool for studying complex fluid flows. Phys. Rev. E 52 (6), R5792 (1995).

https://doi.org/10.1103/PhysRevE.52.R5792

P. Espanol, J. Anero, I. Z'uniga. Microscopic derivation of discrete hydrodynamics. J. Chem. Phys. 131 (24), 244117 (2009).

https://doi.org/10.1063/1.3274222

P. Espanol, P.B. Warren. Perspective: Dissipative particle dynamics. J. Chem. Phys. 146 (15), 150901 (2017).

https://doi.org/10.1063/1.4979514

P. Espanol, P.B. Warren. Statistical mechanics of dissipative particle dynamics. EPL 30 (4), 191 (1995).

https://doi.org/10.1209/0295-5075/30/4/001

P. Espanol, I. Z'uniga. On the definition of discrete hydrodynamic variables. J. Chem. Phys. 131 (16), 164106 (2009).

https://doi.org/10.1063/1.3247586

C.S. Peskin. The immersed boundary method. Acta Numer. 11, 479 (2002).

https://doi.org/10.1017/S0962492902000077

E.R. Smith et al. A localized momentum constraint for non-equilibrium molecular dynamics simulations. J. Chem. Phys. 142 (7), 074110 (2015).

https://doi.org/10.1063/1.4907880

E.R. Smith et al. Control-volume representation of molecular dynamics. Phys. Rev. E 85 (5), 056705 (2012).

https://doi.org/10.1103/PhysRevE.85.056705

G. Voth, S. Izvekov. A multiscale coarse-graining method for biomolecular systems. J. Phys. Chem. B 109 (7), 2469 (2005).

https://doi.org/10.1021/jp044629q

Downloads

Published

2023-10-02

How to Cite

Bakumenko, M., Bardik, V., & Nerukh, D. (2023). The Multiscale Hybrid Method with a Localized Constraint. I. A Modified Control Volume Function for the Hybridized Mass and Momentum Equations. Ukrainian Journal of Physics, 68(8), 517. https://doi.org/10.15407/ujpe68.8.517

Issue

Section

Physics of liquids and liquid systems, biophysics and medical physics