Features of Network Formation in Solutions of Rigid-Chain Polymers

Authors

  • Yu.F. Zabashta Taras Shevchenko National University of Kyiv, Faculty of Physics
  • V.I. Kovalchuk Taras Shevchenko National University of Kyiv, Faculty of Physics
  • O.S. Svechnikova Taras Shevchenko National University of Kyiv, Faculty of Physics
  • S.V. Kondratenko Taras Shevchenko National University of Kyiv, Faculty of Physics
  • S.O. Alekseev Taras Shevchenko National University of Kyiv, Faculty of Physics
  • A.V. Brytan Taras Shevchenko National University of Kyiv, Faculty of Physics
  • L.Yu. Vergun Taras Shevchenko National University of Kyiv, Faculty of Physics
  • L.A. Bulavin Taras Shevchenko National University of Kyiv, Faculty of Physics

DOI:

https://doi.org/10.15407/ujpe68.2.132

Keywords:

polymer network, dynamic light scattering, atomic force microscopy

Abstract

It has been shown that the network in rigid-chain polymer gels has a specific shape: the role of nodes in this network is played by flat aggregates formed by folded polymer chains. A mechanism for the emergence of such a network has been proposed, and its existence in metolose hydrogels has been confirmed experimentally using the dynamic light scattering and atomic force microscopy methods.

References

A.R. Khokhlov, A.Yu. Grosberg, V.S. Pande. Statistical Physics of Macromolecules (American Institute of Physics, 1994) [ISBN: 978-1563960710].

P.-G. Gennes. Scaling Concepts in Polymer Physics (Cornell University Press, 1979) [ISBN: 978-0801412035].

M. Rubinstein, R.H. Colby. Polymer Physics (Oxford University Press, 2003) [ISBN: 978-0198520597].

R.A. Siegel, C. Alvarez-Lorenzo. Hydrogels. In: Drug Delivery: Fundamentals and Application (CRC Press, 2016) [ISBN: 978-1482217742].

J. Li, D.J. Mooney. Designing hydrogels for controlled drug delivery. Nat. Rev. Mater. 1, 16071 (2016).

https://doi.org/10.1038/natrevmats.2016.71

O.M. Alekseev, Yu.F. Zabashta, V.I. Kovalchuk, M.M. Lazarenko, L.A. Bulavin. The structure of polymer clusters in aqueous solutions of hydroxypropylcellulose. Ukr. J. Phys. 64, 238 (2019).

https://doi.org/10.15407/ujpe64.3.238

O.M. Alekseev, Yu.F. Zabashta, V.I. Kovalchuk, M.M. Lazarenko, E.G. Rudnikov, L.A. Bulavin. Structural transition in dilute solutions of rod-like macromolecules. Ukr. J. Phys. 65, 50 (2020).

https://doi.org/10.15407/ujpe65.1.50

V.I. Kovalchuk. Phase separation dynamics in aqueous solutions of thermoresponsive polymers. Cond. Matt. Phys. 24, 43601 (2021).

https://doi.org/10.5488/CMP.24.43601

Yu.F. Zabashta, V.I. Kovalchuk, L.A. Bulavin. Kinetics of the first-order phase transition in a varying temperature field. Ukr. J. Phys. 66, 978 (2021).

https://doi.org/10.15407/ujpe66.11.978

V.I. Kovalchuk, O.M. Alekseev, M.M. Lazarenko. Turbidimetric monitoring of phase separation in aqueous solutions of thermoresponsive polymers. J. Nano- Electron. Phys. 14, 01004 (2022).

https://doi.org/10.21272/jnep.14(1).01004

Yu.F. Zabashta, V.I. Kovalchuk, O.S. Svechnikova, L.A. Bulavin. Determination of the surface tension coefficient of polymer gel. Ukr. J. Phys. 67, 365 (2022).

https://doi.org/10.15407/ujpe67.5.365

Yu.F. Zabashta, V.I. Kovalchuk, O.S. Svechnikova, L.A. Bulavin. Application of the light scattering method to study the hydrogel surface structure. Ukr. J. Phys. 67, 463 (2022).

https://doi.org/10.15407/ujpe67.6.463

Yu.F. Zabashta, V.I. Kovalchuk, O.S. Svechnikova, L.A. Bulavin. Electrocapillary properties of hydrogels. Ukr. J. Phys. 67, 658 (2022).

https://doi.org/10.15407/ujpe67.9.658

A.W. Lloyd, R.G. Faragher, S.P. Denyer. Ocular biomaterials and implants. Biomaterials. 22, 769 (2001).

https://doi.org/10.1016/S0142-9612(00)00237-4

B.H. Koffler, M. McDonald, D.S. Nelinson. Improved signs, symptoms, and quality of life associated with dry eye syndrome: Hydroxypropyl cellulose ophthalmic insert patient registry. Eye Contact Lens 36, 170 (2010).

https://doi.org/10.1097/ICL.0b013e3181db352f

J.L. Drury, D.J. Mooney. Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials. 24, 4337 (2003).

https://doi.org/10.1016/S0142-9612(03)00340-5

J.A. Hunt, R. Chen, T. van Veena, and N. Bryana. Hydrogels for tissue engineering and regenerative medicine. J. Mater. Chem. B. 2, 5319 (2014).

https://doi.org/10.1039/C4TB00775A

J. Siepmann, R. Siegel, M. Rathbone (Eds). Fundamentals and Applications of Controlled Release Drug Delivery (Springer, 2012) [ISBN: 978-1461408802].

https://doi.org/10.1007/978-1-4614-0881-9

M.L. Weiner, L.A. Kotkoskie. Excipient Toxicity and Safety (CRC Press Inc., 2019) [ISBN: 978-0824782108].

K.G. Harding, H.L. Morris, G.K. Patel. Science, medicine and the future: Healing chronic wounds. BMJ 324, 160 (2002).

https://doi.org/10.1136/bmj.324.7330.160

V. Jones, J.E. Grey, K.G. Harding. Wound dressings. BMJ 332, 777 (2006).

https://doi.org/10.1136/bmj.332.7544.777

M.E. Aulton. Aulton's pharmaceutics: the design and manufacture of medicines (Churchill Livingstone, 2007) [ISBN: 978-0443101083].

E. Cal'o, V.V. Khutoryanskiy. Biomedical applications of hydrogels: A review of patents and commercial products. Eur. Polym. J. 65, 252 (2014).

https://doi.org/10.1016/j.eurpolymj.2014.11.024

Metolose: Shin-Etsu Chemical Co., Ltd (Japan). http://www.metolose.jp/en/industrial/metolose.html.

J. Herder, A. Adolfsson, A. Larsson. Initial studies of water granulation of eight grades of hypromellose (HPMC). Int. J. Pharm. 313, 57 (2006).

https://doi.org/10.1016/j.ijpharm.2006.01.024

Metolose: products. https://www.setylose.com/en/products/healthcare/metolose.

Gwyddion. http://gwyddion.net/.

B. Wunderlich. Macromolecular Physics. Vol. 1: Crystal Structure, Morphology, Defects (Academic Press, 1973) [ISBN: 978-0127656014].

B.J. Berne, R. Pecora. Dynamic Light Scattering: With Applications to Chemistry, Biology, and Physics (Dover Publications, 2000) [ISBN: 978-0486411552].

J. Frenkel. Kinetic Theory of Liquids (Dover Publications, 1955) [ASIN: B000ELFWHG].

F. Perrin. Mouvement Brownien d'un ellipsoide (I). Dispersion di˙electrique pour des mol˙ecules ellipsoidales. J. Phys. Radium 5 (10), 497 (1934).

https://doi.org/10.1051/jphysrad:01934005010049700

F. Perrin. Mouvement Brownien d'un ellipsoide (II). Rotation libre et d˙epolarisation des fluorescences. Translation et diffusion de mol˙ecules ellipsoidales. J. Phys. Radium 7, 1 (1936).

https://doi.org/10.1051/jphysrad:01936007010100

H. Yamakawa. Modern Theory of Polymer Solutions (Harper & Row, 1971) [ISBN: 978-0060473099].

J.D. Watson, F.H. Crick. Molecular structure of nucleic acids: A structure for deoxyribose nucleic acid. Nature 171, 737 (1953).

https://doi.org/10.1038/171737a0

F.G. Bass, I.M. Fuks. Wave Scattering from Statistically Rough Surfaces (Pergamon, 1979) [ISBN: 978-1483187754].

https://doi.org/10.1016/B978-0-08-019896-5.50009-1

N.I. Lebovka, Yu.Yu. Tarasevich, L.A. Bulavin, V.I. Kovalchuk, N.V. Vygornitskii. Sedimentation of a suspension of rods: Monte Carlo simulation of a continuous twodimensional problem. Phys. Rev. E 99, 052135 (2019).

https://doi.org/10.1103/PhysRevE.99.052135

Published

2023-04-20

How to Cite

Zabashta, Y., Kovalchuk, V., Svechnikova, O., Kondratenko, S., Alekseev, S., Brytan, A., Vergun, L., & Bulavin, L. (2023). Features of Network Formation in Solutions of Rigid-Chain Polymers. Ukrainian Journal of Physics, 68(2), 132. https://doi.org/10.15407/ujpe68.2.132

Issue

Section

Liquid crystals and polymers