Resonance Structure of 8Be within the Two-Cluster Resonating Group Method


  • N. Kalzhigitov Al-Farabi Kazakh National University
  • V.O. Kurmangaliyeva Al-Farabi Kazakh National University
  • N.Zh. Takibayev Al-Farabi Kazakh National University
  • V.S. Vasilevsky Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine



cluster model, resonating group method, resonance states, Pauli principle


A microscopic two-cluster model is applied to study the elastic alpha-alpha scattering and the resonance structure of 8Be. The model is an algebraic version of the Resonating Group Method (RGM), which involves the complete set of oscillator functions to expand the wave function of a two-cluster system. The interaction of nucleons inside each cluster and the interaction between clusters are determined by the well-known semirealistic nucleon-nucleon potentials which are employed in calculations. They differ by a size of the core at small distances between nucleons and realize the strong, moderate, and weak cores. They allow us to study dependence of calculated quantities on the shape of a nucleon-nucleon potential. The detailed analysis of resonance wave functions is carried out in the oscillator, coordinate, and momentum spaces. Effects of the Pauli principle on the wave functions of the 8Be continuous spectrum states are thoroughly studied.


D.R. Tilley, J.H. Kelley, J.L. Godwin, D.J. Millener, J.E. Purcell, C.G. Sheu, H.R. Weller. Energy levels of light nuclei A = 8, 9, 10. Nucl. Phys. A 745, 155 (2004).

G.F. Filippov, I.P. Okhrimenko. Use of an oscillator basis for solving continuum problems. Sov. J. Nucl. Phys. 32, 480 (1981).

G.F. Filippov. On taking into account correct asymptotic behavior in oscillator-basis expansions. Sov. J. Nucl. Phys. 33, 488 (1981).

Y.A. Lashko, G.F. Filippov, V.S. Vasilevsky. Dynamics of two-cluster systems in phase space. Nucl. Phys. A 941, 121 (2015).

A.S. Solovyev, S.Y. Igashov, Y.M. Tchuvil'sky. Radiative Capture Processes in Multi-Size-Scale Algebraic Version of Resonating Group Model. J. Phys. Conf. Ser. 863, 012015 (2017).

A.S. Solovyev, S.Y. Igashov, Y.M. Tchuvil'sky. Treatment of the mirror 3H(α, γ) 7Li and 3He(α, γ) 7Be reactions in the algebraic version of the resonating group model. J. Phys. Conference Series 569, 012020 (2014).

V.S. Vasilevsky, K. Kat¯o, V. Kurmangaliyeva, A.D. Duisenbay, N. Kalzhigitov, N. Takibayev. Investigation of Discrete and Continuous Spectrum States in Two-Cluster System (Hokkaido University, 2017).

A.D. Duisenbay, N.Zh. Takibayev, V.S. Vasilevsky, V.O. Kurmangaliyeva, E.M. Akzhigitova. Form factors and density distributions of protons and neutrons in 7Li and 7Be. News Nat. Acad. Scien. Rep. Kazakhstan 3 (325), 71 (2019).

N. Kalzhigitov, N.Z. Takibayev, V.S. Vasilevsky, E.M. Akzhigitova, V.O. Kurmangaliyeva. A microscopic two-cluster model of processes in 6Li. News Nat. Acad. Scien. Rep. Kazakhstan: Phys.-Math. Ser. 4 332, (2020).

A.V. Nesterov, F. Arickx, J. Broeckhove, V.S. Vasilevsky. Three-cluster description of properties of light neutronand proton-rich nuclei in the framework of the algebraic version of the resonating group method. Phys. Part. Nucl. 41, 716 (2010).

V.S. Vasilevsky, K. Kat¯o, N. Takibayev. Systematic investigation of the hoyle-analog states in light nuclei. Phys. Rev. C 98, 024325 (2018).

V.S. Vasilevsky, N. Takibayev, A.D. Duisenbay. Microscopic description of 8Li and 8B nuclei within three-cluster model. Ukr. J. Phys. 62 (6), 461 (2017).

A.D. Duisenbay, N. Kalzhigitov, K. Kat¯o, V.O. Kurmangaliyeva, N. Takibayev, V.S. Vasilevsky. Effects of the Coulomb interaction on parameters of resonance states in mirror three-cluster nuclei. Nucl. Phys. A 996, 121692 (2020).

I.P. Okhrimenko. Calculation of quasi-stationary state parameters within the algebraic version of the resonatinggroup method. Few-Body Systems 2, 169 (1987).

M. Abramowitz, A. Stegun. Handbook of Mathematical Functions (Dover Publications, Inc., 1972).

G.F. Filippov, L.L. Chopovsky, V.S. Vasilevsky. On 7Li resonances in the α + t channel. Sov. J. Nucl. Phys. (Yad. Fiz.) 37 (4), 839 (1983).

H.A. Yamani, L. Fishman, J-matrix method: Extensions to arbitrary angular momentum and to Coulomb scattering. J. Math. Phys. 16, 410 (1975).

E.J. Heller, H.A. Yamani. New L2 approach to quantum scattering: Theory. Phys. Rev. A 9, 1201 (1974).

G.F. Filippov, V.S. Vasilevsky, L.L. Chopovsky. Solution of problems in the microscopic theory of the nucleus using the technique of generalized coherent states. Sov. J. Part. Nucl. 16, 153 (1985).

A.I. Baz, Ya.B. Zel'dovich, A.M. Perelomov. Scattering, Reaction in Non-Relativistic Quantum Mechanics (Israel Program for Scientific Translations, 1969).

R.G. Newton. Scattering Theory of Waves and Particles (McGraw-Hill, 1966).

H.A. Yamani, L. Fishman. J-matrix method: Extensions to arbitrary angular momentum and to Coulomb scattering. J. Math. Phys. 16, 410 (1975).

Y.I. Nechaev, Y.F. Smirnov. Solution of the scattering problem in the oscillator representation. Sov. J. Nucl. Phys. 35, 808 (1982).

M.H. Macfarlane, J.B. French. Stripping reactions and the structure of light and intermediate nuclei. Rev. Mod. Phys. 32, 567 (1960).

N.K. Glendenning. Direct Nuclear Reactions (World Scientific, 1983).

O.F. Nemets, V.G. Neudachin, A.T. Rudchik, Yu.F. Smirnov, Yu.M. Tchuvil'sky. Nucleon Clusters in Atomic Nuclei and Many-Nucleon Transfer Reactions (Naukova Dumka, 1988), (in Russian).

A.B. Volkov. Equilibrum deformation calculation of the ground state energies of 1p shell nuclei. Nucl. Phys. 74, 33 (1965).

D.R. Thompson, M. LeMere, Y.C. Tang. Systematic investigation of scattering problems with the resonating-group method. Nucl. Phys. A 286 (1), 53 (1977).

I. Reichstein, Y.C. Tang. Study of N + α system with the resonating-group method. Nucl. Phys. A 158, 529 (1970).

A. Hasegawa, S. Nagata. Ground state of 6Li. Prog. Theor. Phys. 45, 1786 (1971).

F. Tanabe, A. Tohsaki, R. Tamagaki. αα scattering at intermediate energies. Prog. Theor. Phys. 53, 677 (1975).

N.P. Heydenburg, G.M. Temmer. Alpha-alpha scattering at low energies. Phys. Rev. 104, 123 (1956).

T.A. Tombrello, L.S. Senhouse. Elastic scattering of alpha particles from helium. Phys. Rev. 129, 2252 (1963).

P. Darriulat, G. Igo, H.G. Pugh, H.D. Holmgren. Elastic scattering of alpha particles by helium between 53 and 120 MeV. Phys. Rev. 137, 315 (1965).

W.S. Chien, R.E. Brown. Study of the α+α system below 15 MeV (c.m.). Phys. Rev. C 10, 1767 (1974).

A.U. Hazi, H.S. Taylor. Stabilization method of calculating resonance energies: Model problem. Phys. Rev. A 1, 1109 (1970).

T. Myo, Y. Kikuchi, H. Masui, K. Kat¯o. Recent development of complex scaling method for many-body resonances and continua in light nuclei. Progr. Part. Nucl. Phys. 79, 1 (2014).

Y. Kanada-En'yo. Excitation energy shift and size difference of low-energy levels in p-shell Λ hypernuclei. Phys. Rev. C 97, 024330 (2018).

A.V. Nesterov, Y.A. Lashko, V.S. Vasilevsky. Structure of the ground and excited states in 9 ΛBe nucleus. Nucl. Phys. A 1016, 122325 (2021).




How to Cite

Kalzhigitov, N., Kurmangaliyeva, V., Takibayev, N., & Vasilevsky, V. (2023). Resonance Structure of 8Be within the Two-Cluster Resonating Group Method. Ukrainian Journal of Physics, 68(1), 3.



Fields and elementary particles