Features of the Generation of Energy States in the Lu1 – xVxNiSb Semiconductor


  • V.V. Romaka Leibniz Institute for Solid State and Materials Research (IFW) Dresden
  • V.A. Romaka Lviv Polytechnic National University
  • Yu.V. Stadnyk Ivan Franko National University of Lviv
  • L.P. Romaka Ivan Franko National University of Lviv
  • Y.O. Plevachuk Ivan Franko National University of Lviv
  • A.M. Horyn Ivan Franko National University of Lviv
  • V.Z. Pashkevych Lviv Polytechnic National University
  • P.I. Haraniuk Lviv Polytechnic National University




Fermi level, electronic structure, electrical resistivity, thermopower coefficient


A comprehensive study of the crystal and electronic structures, thermodynamic, kinetic, energy, and magnetic properties of the Lu1−xVxNiSb semiconductor (x = 0÷0.10) has revealed the possibility for impurity V atoms to simultaneously occupy different crystallographic positions. At the same time, defects of the acceptor or donor nature are generated in the crystal structure of the Lu1−xVxNiSb solid solution, and the corresponding energy states appear in the band gap ϵg. The concentration ratio of donor-acceptor states determines the position of the Fermi level ϵF and the mechanisms of electrical conductivity of Lu1−xVxNiSb. The results of the modeling of thermodynamic and transport properties of the semiconductor are consistent with experimental data. Understanding the mechanism of energy state generation in the semiconductor Lu1−xVxNiSb allows the modeling and production of new thermoelectric materials with a high efficiency of converting the thermal energy into the electrical one.


K. Hartjes, W. Jeitschko. Crystal structure and magnetichyt56 properties of the lanthanoid nickel antimonides LnNiSb (Ln = La-Nd, Sm, Gd-Tm, Lu). J. Alloys Compd. 226, 81 (1995).


L.I. Anatychuk. Thermoelements and Thermoelectric Devices. Reference Book (Naukova dumka, 1979) [in Russian].

I. Karla, J. Pierre, R.V. Skolozdra. Physical properties and giant magnetoresistance in RNiSb compounds. J. Alloys Compd. 265, 42 (1998).


V.V. Romaka, L. Romaka, A. Horyn, P. Rogl, Yu. Stadnyk, N. Melnychenko, M. Orlovskyy, V. Krayovskyy. Peculiarities of thermoelectric half-Heusler phase formation in Gd-Ni-Sb and Lu-Ni-Sb ternary systems. J. Solid State Chem. 239, 145 (2016).


K. Ciesielski, K. Synoradzki, I. Wolanska, P. Stachowiak, L. Kepinski, A. Jezowski, T. Tolinski, D. Kaczorowski. High-temperature power factor of half-Heusler phases RENiSb (RE = Sc, Dy, Ho, Er, Tm, Lu). J. Alloys Compd. 816, 152596 (2020).


D. Gnida, K. Ciesielski, D. Kaczorowski. Origin of the negative temperature coefficient of resistivity in the halfHeusler antimonides LuNiSb and YPdSb. Phys. Rev. B 103, 174206 (2021).


V.V. Romaka, L. Romaka, A. Horyn, Yu. Stadnyk. Experimental and theoretical investigation of the Y-Ni-Sb and Tm-Ni-Sb systems. J. Alloys Compd. 855, 157334-12 (2021).


V.V. Romaka, Yu.V. Stadnyk, P.F. Rogl, L.P. Romaka, V.Y. Krayovskyy, A.Y. Horpenyuk, A.M. Horyn. Mechanism of Defect Formation Zr1−xVxNiSn Thermoelectric Material. Ukr. J. Phys. 66, 333 (2021).


V.A. Romaka, Yu.V. Stadnyk, V.Ya. Krayovskyy, L.P. Romaka, O.P. Guk, V.V. Romaka, M.M. Mykyychuk, A.M. Horyn. The Latest Heat-Sensitive Materials and Temperature Transducers (Lviv Polytechnic Publishing House, 2020) [in Ukrainian].

V.A. Romaka, Yu.V. Stadnyk, L.G. Akselrud, V.V. Romaka, D. Fruchart, P.F. Rogl, V.N. Davydov, Yu.K. Gorelenko. Mechanism of local amorphization of a heavily doped Ti1−xVxCoSb intermetallic semiconductor. Semiconductors 42, 753 (2008).


V.A. Romaka, P. Rogl, V.V. Romaka, D. Kaczorowski, Yu.V. Stadnyk, V.Ya. Krayovskyy, A.M. Horyn. Features of conductivity mechanisms in heavily doped compensated V1−xTixFeSb semiconductor. Semiconductors 50, 860 (2016).


V.A. Romaka, Yu.V. Stadnyk, L.P. Romaka, V.Z. Pashkevych, V.V. Romaka, A.M. Horyn, P.Yu. Demchenko. Study of structural, thermodynamic, energy, kinetic and magnetic properties of thermoelectric material Lu1−xZrxNiSb. J. Thermoelectricity 1, 32 (2021).

V.V. Romaka, V.A. Romaka, Yu.V. Stadnyk, L.P. Romaka, P.Y. Demchenko, V.Z. Pashkevych, A.M. Horyn. Featutes of mechanisms of electrical conductivity in semiconductive solid solution Lu1−xScxNiSb. Ukr. J. Phys. 67, 370 (2022).


T. Roisnel, J. Rodriguez-Carvajal. WinPLOTR: a windows tool for powder diffraction patterns analysis. Mater. Sci. Forum, Proc. EPDIC7 378-381, 118 (2001).


G. Kresse, J. Hafner. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558 (1993).


G. Kresse, D. Joubert. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999).


J.P. Perdew, K. Burke, M. Ernzerhof. Generalized gradient approximation made simple. Phys. Rev. Lett. 77 (18), 3865-8 (1996).


H.J. Monkhorst, J.K. Pack. Special points for Brillouinzone integrations. Phys. Rev. B 13, 5188 (1976).


K. Okhotnikov, T. Charpentier, S. Cadars. Supercell program: a combinatorial structure-generation approach for the local-level modeling of atomic substitutions and partial occupancies in crystals. J. Cheminform. 8 (17), 1 (2016).


P. Vinet, J.H. Rose, J.S. Jr Ferrante. Universal features of the equation of state of solids. J. Phys.: Codens. Matter. 1, 1941 (1989).


A. Gulans, S. Kontur, C. Meisenbichler, D. Nabok, P. Pavone, S. Rigamonti, S. Sagmeister, U. Werner, C. Draxl. Exciting - a full-potential all-electron package implementing density-functional theory and many-body perturbation theory. J. Phys.: Condens Matter. 26 363202, 1 (2014).


B.R. Nag. Electron Transport in Compound Semiconductors (Springer Verlag, 1996).

G.D. Mahan and J.O. Sofo. The best thermoelectric. Proc. Natl. Acad. Sci. USA 93, 7436 (1996).


T.J. Scheidemantel, C. Ambrosch-Draxl, T. Thonhauser, H.V. Badding, J.O. Sofo. Transport coefficients from firstprinciples calculations. Phys. Rev. B 68, 125210 (2003).


N.F. Mott and E.A. Davis. Electron Processes in NonCrystalline Materials (Clarendon Press, 1979).

B.I. Shklovskii, A.L. Efros. Electronic Properties of Doped Semiconductors (Springer-Verlag, 1984).





How to Cite

Romaka, V., Romaka, V., Stadnyk, Y., Romaka, L., Plevachuk, Y., Horyn, A., Pashkevych, V., & Haraniuk, P. (2023). Features of the Generation of Energy States in the Lu1 – xVxNiSb Semiconductor. Ukrainian Journal of Physics, 68(4), 274. https://doi.org/10.15407/ujpe68.4.274



Semiconductors and dielectrics

Most read articles by the same author(s)