Temperature and Concentration Dependences of pH in Aqueous NaCl Solutions with Dissolved Atmospheric CO2


  • L.A. Bulavin Taras Shevchenko National University of Kyiv, Faculty of Physics
  • N.P. Malomuzh Odessa I.I. Mechnikov National University
  • O.V. Khorolskyi Poltava V.G. Korolenko National Pedagogical University




aqueous solution, sodium chloride, acid-base balance, carbon dioxide, relaxation time


Temporal variations in the temperature and concentration dependences of the acid-base balance (pH) in dilute aqueous sodium chloride (NaCl) solutions contacting with atmospheric carbon dioxide (CO2) have been studied. The measurements are carried out for the inverse ion concentrations corresponding to 180, 215, 270, and 360 water molecules per sodium or chlorine ion and in a temperature interval of 294–323 K. The pH relaxation times in aqueous NaCl solutions with dissolved atmospheric CO2 and the corresponding temperature and salt-concentration dependences are calculated. For aqueous salt solutions characterized by a
temperature and an irreducible pH component, a principle for selecting the optimal states is formulated: optimal are those values that provide the minimum pH relaxation time. On this basis, the temperature interval of human activity is determined to extend from (30 ± 2) C to 42 C.


O.D. Stoliaryk, O.V. Khorolskyi. Influence of atmospheric carbon dioxide on the acid-base balance in aqueous sodium chloride solutions. Ukr. J. Phys. 67, 515 (2022).


D.A. Story, P. Thistlethwaite, R. Bellomo. The effect of PVC packaging on the acidity of 0.9% saline. Anaesth. Intens. Care 28, 287 (2000).


B.A. Reddi. Why is saline so acidic (and does it really matter?). Int. J. Med. Sci. 10, 747 (2013).


J. Crolet, M. Bonis. pH measurements in aqueous CO2 solutions under high pressure and temperature. Corrosion 39, 39 (1983).


G. Hinds, P. Cooling, A. Wain, S. Zhou, A. Turnbull. Technical note: Measurement of pH in concentrated brines. Corrosion 65, 635 (2009).


R.G. Bates. Determination of pH: Theory and Practice (John Wiley and Sons, 1964) [ISBN: 9780471056461].

R.P. Buck, S. Rondinini, A.K. Covington, F.G.K. Baucke, C.M.A. Brett, M.F. Camoes, M.J.T. Milton, T. Mussini, R. Naumann, K.W. Pratt, P. Spitzer, G.S. Wilson. Measurement of pH. Definition, standards, and procedures (IUPAC Recommendations 2002). Pure Appl. Chem. 74, 2169 (2002).


G. Meinrath, P. Spitzer. Uncertainties in determination of pH. Mikrochim. Acta 135, 155 (2000).


I. Leito, L. Strauss, E. Koort, V. Pihl. Estimation of uncertainty in routine pH measurement. Accredit. Qual. Assur. 7, 242 (2002).


L.A. Bulavin, V.Y. Gotsulskyi, N.P. Malomuzh, A.I. Fisenko. Crucial role of water in the formation of basic properties of living matter. Ukr. J. Phys. 65, 794 (2020).


T.T. Berezov, B.F. Korovkin. Biological Chemistry (Meditsyna, 1998) (in Russian).

W. Davison, C. Woof. Performance tests for the measurement of pH with glass electrodes in low ionic strength solutions including natural waters. Anal. Chem. 57, 2567 (1985).


W. Stumm, J.J. Morgan. Aquatic Chemistry, Chemical Equilibria and Rates in Natural Water. (John Wiley and Sons, 1996) [ISBN: 978-0-471-51185-4].

A.A. Guslisty, N.P. Malomuzh, A.I. Fisenko. Optimal temperature for human life activity. Ukr. J. Phys. 63, 809 (2018).


A.I. Fisenko, N.P. Malomuzh. To what extent is water responsible for the maintenance of the life for warm-blooded organisms? Int. J. Mol. Sci. 10, 2383 (2009).


L.A. Bulavin, N.P. Malomuzh. Upper temperature limit for the existence of the alive matter. J. Mol. Liq. 124, 136 (2006).


L.A. Bulavin, N.P. Malomuzh. Dynamic phase transition in water as the most important factor in provoking protein denaturation in warm-blooded organisms. Fiz. Zhivogo 18, No. 2, 16 (2010) (in Russian).

A.I. Fisenko, N.P. Malomuzh. Role of the H-bond network in the creation of life-giving properties of water. Chem. Phys. 345, 164 (2008).


L.A. Bulavin, A.I. Fisenko, N.P. Malomuzh. Surprising properties of the kinematic shear viscosity of water. Chem. Phys. Lett. 453, 183 (2008).


N.P. Malomuzh, V.N. Makhlaichuk, P.V. Makhlaichuk, K.N. Pankratov. Cluster structure of water in accordance with data on dielectric permittivity and heat capacity. Zh. Strukt. Khim. 54, S210 (2013) (in Russian).


O.V. Khorolskyi, N.P. Malomuzh. Macromolecular sizes of serum albumins in its aqueous solutions. AIMS Biophysics 7, 219 (2020).


O.V. Khorolskyi. Calculation of the effective macromolecular radii of human serum albumin from the shear viscosity data for its aqueous solutions. Ukr. J. Phys. 64, 287 (2019).


O.V. Khorolskyi, Y.D. Moskalenko. Calculation of the macromolecular size of bovine serum albumin from the viscosity of its aqueous solutions. Ukr. J. Phys. 65, 41 (2020).


L.A. Bulavin, O.V. Khorolskyi. Concentration dependences of macromolecular sizes in aqueous solutions of albumins. Ukr. J. Phys. 65, 619 (2020).




How to Cite

Bulavin, L., Malomuzh, N., & Khorolskyi, O. (2023). Temperature and Concentration Dependences of pH in Aqueous NaCl Solutions with Dissolved Atmospheric CO2. Ukrainian Journal of Physics, 67(12), 833. https://doi.org/10.15407/ujpe67.12.833



Physics of liquids and liquid systems, biophysics and medical physics

Most read articles by the same author(s)

<< < 1 2 3 4 5 > >>