Light Pressure on Nanoparticles in the Field of the Counter-Propagating Bichromatic Waves with an Additional Relaxation Channel for the Excited State Population


  • V.I. Romanenko Institute of Physics, Nat. Acad. of Sci. of Ukraine
  • N.V. Kornilovska Kherson National Technical University
  • L.P. Yatsenko Institute of Physics, Nat. Acad. of Sci. of Ukraine



atoms, nanoparticles, laser radiation, light pressure


Light pressure on nanoparticles containing impurity atoms or color centers interacting resonantly with the field has been considered. In the general case, the available crystalline environment of atoms prohibits the formation of a two-level interaction scheme of the atom or the color center with the field by eliminating the prohibition on some transitions with spontaneous radiation emission. As a result, some atoms remain temporarily in the states that do not interact with the laser radiation field, but relax in time to the ground state. A theory which enables the calculation of the light-pressure force on atoms or color centers (and, accordingly, on the nanoparticle, where they are located) and its dependence on the atom–field interaction parameters, as well as the relaxation parameters of the excited and intermediate states, has been developed. To analyze the influence of various factors on the light-pressure force, calculations are made for a model set of parameters and for the parameters corresponding to the interaction between triply charged erbium ions in erbium-doped Y2SiO5 crystals and color centers that emerge owing to the occupation of defects in diamond crystals by silicon atoms. It turned out that the color centers make it possible to reinforce the light pressure on small, much smaller than the light wavelength, nanoparticles by several orders of magnitude.


J.L. Killian, F. Ye, M.D. Wang. Optical tweezers: A force to Be reckoned with. Cell. 175, 1445 (2018).

P. Polimeno, A. Magazz'u, M.A. Iat'ı, F. Patti, R. Saija, C.D. Esposti Boschi, M.G. Donato, P.G. Gucciardi, P.H. Jones, G. Volpe, et al. Optical tweezers and their applications. J. Quantitative Spectroscopy and Radiative Transfer 218, 131 (2018).

S.T. M¨uller, D.V. Magalh.aes, R.F. Alves, V.S. Bagnato. Compact frequency standard based on an intracavity sample of cold cesium atoms. J. Opt. Soc. Am. B 28, 2592 (2011).

V. Shah, R. Lutwak, R. Stoner, M. Mescher. A compact and low-power cold atom clock. In: 2012 IEEE International Frequency Control Symposium Proceedings (2012), p. 1.

F.P. dos Santos, S. Bonvalot. Cold-Atom Absolute Gravimetry (Springer International Publishing, 2016).

V.G. Minogin, V.S. Letokhov. Laser Light Pressure on Atoms (Gordon and Breach, 1987).

H.J. Metcalf, P. van der Stratten. Laser Cooling and Trapping (Springer-Verlag, 1999).

A.P. Kazantsev. Acceleration of atoms by light. Zh. Eksp. Teor. Fiz. 66, 1599 (1974) (in Russian).

V.S. Voitsekhovich, M.V. Danileiko, A.M. Negriiko, V.I. Romanenko, L.P. Yatsenko. Light pressure on atoms in counterpropagating amplitude-modulated waves. Sov. Phys. Tech. Phys. 33, 690 (1988).

V.S. Voitsekhovich, M.V. Danileiko, A.N. Negriiko, V.I. Romanenko, L.P. Yatsenko. Observation of a stimulated radiation pressure of amplitude-modulated light on atoms. JETP Lett. 49, 161 (1989).

J. S¨oding, R. Grimm, Y. Ovchinnikov, P. Bouyer, C. Salomon. Short-Distance atomic beam deceleration with a stimulated light force. Phys. Rev. Lett. 78, 1420 (1997).

L. Yatsenko, H. Metcalf. Dressed-atom description of the bichromatic force. Phys. Rev. A 70, 063402 (2004).

A.M. Negriiko, V.I. Romanenko, L.P. Yatsenko. Dynamics of Atoms and Molecules in Coherent Laser Fields (Naukova dumka, 2008) (in Russian).

H. Metcalf. Strong optical forces on atoms in multifrequency light. Rev. Mod. Phys. 89, 041001 (2017).

V.I. Romanenko, L.P. Yatsenko. Stimulated radiation pressure acting on an atom nonadiabatically interacting with the field of counterpropagating frequency-modulated waves. JETP Lett. 86, 756 (2007).

V. Romanenko, B. Shore, L. Yatsenko. Forces exerted on atoms by stochastic laser fields. Optics Communications 268, 121 (2006) ISSN 0030- 4018.

V.I. Romanenko, L.P. Yatsenko. Theory of onedimensional trapping of atoms by counterpropagating short pulse trains. J. Phys. B: Atomic, Molecular and Optical Phys. 44, 115305 (2011).

V.I. Romanenko, Y.G. Udovitskaya, A.V. Romanenko, L.P. Yatsenko. Cooling and trapping of atoms and molecules by counterpropagating pulse trains. Phys. Rev. A 90, 053421 (2014).

V.I. Romanenko, O.V. Romanenko, L.P. Yatsenko. An optical trap for atoms on the basis of counter-propagating bichromatic light waves. Ukr. J. Phys. 61, 309 (2016).

V.I. Romanenko, N.V. Kornilovska. Atoms in the counterpropagating frequency-modulated waves: splitting, cooling, confinement. Eur. Phys. J. D 71, 229 (2017).

M. Kerker. The Scattering of Light and Other Electromagnetic Radiation (Academic press, 1969).

L. Podlecki, R. Glover, J. Martin, T. Bastin. Radiation pressure on a two-level atom: An exact analytical approach. JOSA B 35, 127 (2018).

L. Podlecki, J. Martin, T. Bastin. Radiation pressure on single atoms: Generalization of an exact analytical approach to multilevel atoms. J. Opt. Soc. Am. B 38, 3244 (2021).

V.I. Romanenko, L.P. Yatsenko. Evolution of the velocity distribution of atoms under the action of the bichromatic force. Phys. Rev. A 103, 043104 (2021).

R.L. Cone, C.W. Thiel, Y. Sun, T. B¨ottger, R.M. Macfarlane. Rare-earth-doped materials with application to optical signal processing, = quantum information science, and medical imaging technology. Proc. SPIE 8272, 82720E (2012).

E. Baldit, K. Bencheikh, P. Monnier, S. Briaudeau, J.A. Levenson, V. Crozatier, I. Lorger'e, F. Bretenaker, J.L. Le Gou¨et, O. Guillot-No'el et al. Identification of Λ-like systems in Er3+: Y2SiO5 and observation of electromagnetically induced transparency. Phys. Rev. B 81, 144303 (2010).

B. Shore. The Theory of Coherent Atomic Excitation (Wiley, 1990), Vol. 1. 28. T. B¨ottger, C.W. Thiel, Y. Sun, R.L. Cone. Optical decoherence and spectral diffusion at 1.5 μm in Er3+: Y2SiO5 versus magnetic field, temperature, and Er3+ concentration. Phys. Rev. B 73, 075101 (2006).

R.E. Evans, A. Sipahigil, D.D. Sukachev, A.S. Zibrov, M.D. Lukin. Narrow-linewidth homogeneous optical emitters in diamond nanostructures via silicon ion implantation. Phys. Rev. Applied 5, 044010 (2016).

M.K. Bhaskar, D.D. Sukachev, A. Sipahigil, R.E. Evans, M.J. Burek, C.T. Nguyen, L.J. Rogers, P. Siyushev, M.H. Metsch, H. Park et al. Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Phys. Rev. Lett. 118, 223603 (2017).

C. Hepp, T. M¨uller, V. Waselowski, J.N. Becker, B. Pingault, H. Sternschulte, D. Steinm¨uller-Nethl, A. Gali, J.R. Maze, M. Atat¨ure et al.. Electronic structure of the silicon vacancy color center in diamond. Phys. Rev. Lett. 112, 036405 (2014).

Y. Harada, T. Asakura. Radiation forces on a dielectric sphere in the Rayleigh scattering regime. Optics Communications 124, 529 (1996).



How to Cite

Romanenko, V., Kornilovska, N., & Yatsenko, L. (2023). Light Pressure on Nanoparticles in the Field of the Counter-Propagating Bichromatic Waves with an Additional Relaxation Channel for the Excited State Population. Ukrainian Journal of Physics, 68(4), 219.



Optics, atoms and molecules