Induced Vacuum Energy Density of Quantum Charged Scalar Matter in the Background of an Impenetrable Magnetic Tube with the Neumann Boundary Condition

Authors

  • V.M. Gorkavenko Taras Shevchenko National University of Kyiv, Ukraine
  • T.V. Gorkavenko Taras Shevchenko National University of Kyiv, Ukraine
  • Yu.A. Sitenko Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine, Donostia International Physics Center
  • M.S. Tsarenkova Taras Shevchenko National University of Kyiv, Ukraine

DOI:

https://doi.org/10.15407/ujpe67.10.715

Keywords:

vacuum polarization, Aharonov–Bohm effect, Casimir effect

Abstract

We consider the vacuum polarization of a charged scalar matter field outside the tube with magnetic flux inside. The tube is impenetrable for quantum matter, and the perfectly rigid (Neumann) boundary condition is imposed at its surface. We write expressions for the induced vacuum energy density for the case of a space with arbitrary dimension and for an arbitrary value of the magnetic flux. We do the numerical computation for the case of a half-integer flux value in the London flux units and the (2 + 1)-dimensional space-time. We show that the induced vacuum energy of the charged scalar matter field is induced, if the Compton wavelength of the matter field exceeds the transverse size of the tube considerably. We show that the vacuum energy is periodic in the value of the magnetic flux of the tube, providing a quantumfield-theoretical manifestation of the Aharonov–Bohm effect. The dependencies of the induced vacuum energy upon the distance from the center of the tube for different values of its thickness are obtained. The results are compared to those obtained earlier in the case of the perfectly reflecting (Dirichlet) boundary condition. It is shown that the value of the induced vacuum energy density in the case of the Neumann boundary condition is greater than in the case of the Dirichlet boundary condition.

References

H.B.G. Casimir. On the attraction between two perfectly conducting plates. Proc. Kon. Ned. Akad. Wetenschap B 51, 793 (1948); Physica 19, 846 (1953).

https://doi.org/10.1016/S0031-8914(53)80095-9

E. Elizalde. Ten Physical Applications of Spectral Zeta Functions (Springer-Verlag, 1995) [ISBN: 3-540-60230-5].

V.M. Mostepanenko, N.N. Trunov. The Casimir effect and its applications (Clarendon Press, 1997).

M. Bordag, U. Mohideen, V.M. Mostepanenko. New developments in the Casimir effect. Phys. Rept. 353, 1 (2001).

https://doi.org/10.1016/S0370-1573(01)00015-1

Y. Aharonov, D. Bohm. Significance of Electromagnetic potentials in the quantum theory. Phys. Rev. 115, 485 (1959).

https://doi.org/10.1103/PhysRev.115.485

Yu.A. Sitenko, A.Yu. Babansky. The Casimir-Aharonov-Bohm effect? Mod. Phys. Lett. A 13 (5), 379 (1998).

https://doi.org/10.1142/S0217732398000437

T.W.B. Kibble. Some implications of a cosmological phase transition. Phys. Rep. 67, 183 (1980).

https://doi.org/10.1016/0370-1573(80)90091-5

A. Vilenkin. Cosmic strings. Phys. Rev. D 24, 2082 (1981).

https://doi.org/10.1103/PhysRevD.24.2082

A. Vilenkin, E.P.S. Shellard. Cosmic Strings and Other Topological Defects (Cambridge Univ. Press, Cambridge UK, 1994).

M.B. Hindmarsh, T.W.B. Kibble. Cosmic strings. Rep. Progr. Phys. 58, 477 (1995).

https://doi.org/10.1088/0034-4885/58/5/001

A.A. Abrikosov. On the magnetic properties of superconductors of the second group. Sov. Phys.-JETP 5, 1174 (1957).

H.B. Nielsen, P. Olesen. Vortex-line models for dual strings. Nucl. Phys. B 61, 45 (1973).

https://doi.org/10.1016/0550-3213(73)90350-7

A. Krishnan, E. Dujardin, M.M.J. Treacy, J. Hugdahl, S. Lynum, T.W. Ebbesen. Graphitic cones and the nucleation of curved carbon surfaces. Nature 388, 451 (1997).

https://doi.org/10.1038/41284

Yu.A. Sitenko, N.D. Vlasii. Electronic properties of graphene with a topological defect. Nucl. Phys. B 787, 241 (2007).

https://doi.org/10.1016/j.nuclphysb.2007.06.001

S.N. Naess, A. Elgsaeetter, G. Helgesen, K.D. Knudsen. Carbon nanocones: Wall structure and morphology. Sci. Technol. Adv. Mat. 10, 065002 (2009).

https://doi.org/10.1088/1468-6996/10/6/065002

Yu.A. Sitenko, V.M. Gorkavenko. Properties of the ground state of electronic excitations in carbon-like nanocones. Low Temp. Phys. 44, 1261 (2018) [Fiz. Nizk. Temp. 44, 1618 (2018)].

https://doi.org/10.1063/1.5078524

E.M. Serebrianyi. Vacuum polarization by magnetic flux: The Aharonov-Bohm effect. Theor. Math. Phys. 64, 846 (1985) [Teor. Mat. Fiz. 64, 299 (1985)].

https://doi.org/10.1007/BF01017966

P. Gornicki. Aharonov-bohm effect and vacuum polarization. Ann. Phys. (N.Y.) 202, 271 (1990).

https://doi.org/10.1016/0003-4916(90)90226-E

E.G. Flekkoy, J.M. Leinaas. Vacuum currents around a magnetic flux string. Intern. J. Mod. Phys. A 06, 5327 (1991).

https://doi.org/10.1142/S0217751X91002501

R.R. Parwani, A.S. Goldhaber. Decoupling in (2+1)-dimensional QED? Nucl. Phys. B 359, 483 (1991).

https://doi.org/10.1016/0550-3213(91)90069-A

Yu.A. Sitenko. Self-adjointness of the Dirac hamiltonian and fermion number fractionization in the background of a singular magnetic vortex. Phys. Lett. B 387, 334 (1996).

https://doi.org/10.1016/0370-2693(96)01042-8

Yu.A. Sitenko. Self-adjointness of the Dirac hamiltonian and vacuum quantum numbers induced by a singular external field. Phys. Atom. Nucl. 60, 2102 (1997) [Yad. Fiz. 60, 2285 (1997)].

Yu.A. Sitenko, A.Yu. Babansky. Effects of boson-vacuum polarization by a singular magnetic vortex. Phys. Atom. Nucl. 61, 1594 (1998) [Yad. Fiz. 61, 1706 (1998)].

A.Yu. Babanskii, Ya.A. Sitenko. Vacuum energy induced by a singular magnetic vortex. Theor. Math. Phys. 120, 876 (1999).

https://doi.org/10.1007/BF02557397

Yu.A. Sitenko, V.M. Gorkavenko. Induced vacuum energymomentum tensor in the background of a (d − 2)-brane in (d + 1)-dimensional space-time. Phys. Rev. D 67, 085015 (2003).

https://doi.org/10.1103/PhysRevD.67.085015

V.M. Gorkavenko, Yu.A. Sitenko, O.B. Stepanov. Polarization of the vacuum of a quantized scalar field by an impenetrable magnetic vortex of finite thickness. J. Phys. A: Math. Theor. 43, 175401 (2010).

https://doi.org/10.1088/1751-8113/43/17/175401

V.M. Gorkavenko, Yu.A. Sitenko, O.B. Stepanov. Vacuum energy induced by an impenetrable flux tube of finite radius. Int. J. Mod. Phys. A 26, 3889 (2011).

https://doi.org/10.1142/S0217751X11054346

V.M. Gorkavenko, Yu.A. Sitenko, O.B. Stepanov. Casimir energy and force induced by an impenetrable flux tube of finite radius. Int. J. Mod. Phys. A 28, 1350161 (2013).

https://doi.org/10.1142/S0217751X13501613

V.M. Gorkavenko, I.V. Ivanchenko, Yu.A. Sitenko. Induced vacuum current and magnetic field in the background of a vortex. Int. J. Mod. Phys. A 31, 1650017 (2016).

https://doi.org/10.1142/S0217751X16500172

V.M. Gorkavenko, T.V. Gorkavenko, Yu.A. Sitenko, M.S. Tsarenkova. Induced vacuum current and magnetic flux in quantum scalar matter in the background of a vortex defect with the Neumann boundary condition. Ukr. J. Phys. 67, 3 (2022).

https://doi.org/10.15407/ujpe67.1.3

Yu.A. Sitenko, V.M. Gorkavenko, M.S. Tsarenkova. Magnetic flux in the vacuum of quantum bosonic matter in the cosmic string background. Phys. Rev. D 106, 105010 (2022).

https://doi.org/10.1103/PhysRevD.106.105010

J.S. Dowker, R. Critchley. Effective Lagrangian and energy-momentum tensor in de Sitter space. Phys. Rev. D. 13, 3224 (1976).

https://doi.org/10.1103/PhysRevD.13.3224

S.W. Hawking. Zeta function regularization of path integrals in curved spacetime. Commun. Math. Phys. 55, 133 (1977).

https://doi.org/10.1007/BF01626516

D. Cangemi, G. Dunne, E. D'Hoker. Effective energy for (2 + 1)-dimensional QED with semilocalized static magnetic fields: A solvable model. Phys. Rev. D. 52, 3163 (1995).

https://doi.org/10.1103/PhysRevD.52.R3163

M.P. Fry. QED in inhomogeneous magnetic fields. Phys. Rev. D 54, 6444 (1996).

https://doi.org/10.1103/PhysRevD.54.6444

G. Dunne and T.M. Hall. An exact QED3+1 effective action. Phys. Lett. B 419, 322 (1998).

https://doi.org/10.1016/S0370-2693(97)01429-9

M. Bordag and K. Kirsten. The ground state energy of a spinor field in the background of a finite radius flux tube. Phys. Rev. D 60, 105019 (1999).

https://doi.org/10.1103/PhysRevD.60.105019

M. Scandurra. Vacuum energy in the presence of a magnetic string with a delta function profile. Phys. Rev. D. 62, 085024 (2000).

https://doi.org/10.1103/PhysRevD.62.085024

K. Langfeld, L. Moyaerts, H. Gies. Fermion induced quantum action of vortex systems. Nucl. Phys. B 646, 158 (2002).

https://doi.org/10.1016/S0550-3213(02)00835-0

N. Graham, V. Khemani, M. Quandt, O. Schroeder, H. Weigel. Quantum QED flux tubes in 2+1 and 3+1 dimensions. Nucl. Phys. B 707, 233 (2005).

https://doi.org/10.1016/j.nuclphysb.2004.11.057

Downloads

Published

2023-01-04

How to Cite

Gorkavenko, V., Gorkavenko, T., Sitenko, Y., & Tsarenkova, M. (2023). Induced Vacuum Energy Density of Quantum Charged Scalar Matter in the Background of an Impenetrable Magnetic Tube with the Neumann Boundary Condition. Ukrainian Journal of Physics, 67(10), 715. https://doi.org/10.15407/ujpe67.10.715

Issue

Section

Fields and elementary particles

Most read articles by the same author(s)