Fluctuations of Piezoelectric Polarization in III-Nitride Quantum Wells

Authors

  • A.V. Zinovchuk Ivan Franko State University of Zhytomyr
  • D.A. Stepanchikov Ivan Franko State University of Zhytomyr
  • R.Yu. Vasylieva Ivan Franko State University of Zhytomyr
  • V.S. Slipokurov V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe68.1.47

Keywords:

InGaN quantum wells, atomic disorder, piezoelectric polarization

Abstract

In this work, the influence of the atomic disorder on a local piezoelectric polarization in polar II-nitride quantum wells is simulated. The calculation is performed for GaN/InGaN/GaN structures with a random distribution of In atoms in the quantum well region. The key component of the research is the valence force field model optimized for nitrides, which is used to obtain the distribution of relaxed atomic positions and the local strain tensor. The calculation showed a strong spatial non-uniformity of the piezoelectric polarization, which can even change the sign of the local polarization value and makes the distribution of a polarization potential substantially different from the standard capacitor-like picture that is observed in the case of constant polarization vectors in the quantum well and barriers.

References

F. Bernardini, V. Fiorentini, D. Vanderbilt. Spontaneous polarization and piezoelectric constants of III-V nitrides. Phys. Rev. B 56, R10024(R) (1997).

https://doi.org/10.1103/PhysRevB.56.R10024

G. Martin, A. Botchkarev, A. Rockett, H. Morkoc. Valence-band discontinuities of wurtzite GaN, AlN, and InN heterojunctions measured by x-ray photoemission spectroscopy. Appl. Phys. Lett. 74, 2541 (1996).

https://doi.org/10.1063/1.116177

R. Langer, J. Simon, V. Ortiz, N.T. Pelekanos, A. Barski, R. Andre, M. Godlewski. Giant electric fields in unstrained GaN single quantum wells. Appl. Phys. Lett. 74, 3827 (1999).

https://doi.org/10.1063/1.124193

M. Leroux, N. Grandjean, J. Massies, B. Gil, P. Lefebvre, P. Bigenwald. Barrier-width dependence of group-III nitrides quantum-well transition energies. Phys. Rev. B 60, 1496 (1999).

https://doi.org/10.1103/PhysRevB.60.1496

M.H. Kim, M.F. Schubert, Q. Dai, J.K. Kim, E.F. Schubert, J. Piprek, Y. Park. Origin of efficiency droop in GaNbased light-emitting diodes. Appl. Phys. Lett. 91, 183507 (2007).

https://doi.org/10.1063/1.2800290

K.S. Kim, J.H. Kim, Y.M. Park, S.J. Jung, Y.J. Park, S.N. Cho. Investigation of dominant effect on efficiency droop in InGaN light emitting device. Appl. Phys. Lett. 97, 031113 (2010).

https://doi.org/10.1063/1.3467451

V. Fiorentini, F. Bernardini, F.D. Sala, A. Di Carlo, P. Lugli. Effects of macroscopic polarization in III-V nitride multiple quantum wells. Phys. Rev. B 60, 8849 (1999).

https://doi.org/10.1103/PhysRevB.60.8849

F. Bernardini, V. Fiorentini, D. Vanderbilt. First-principles calculation of the piezoelectric tensor of III-V nitrides. Appl. Phys. Lett. 80, 4145 (2002).

https://doi.org/10.1063/1.1482796

P.Y. Prodhomme, A. Beya-Wakata, G. Bester. Nonlinear piezoelectricity in wurtzite semiconductors. Phys. Rev. B 88, 121304(R) (2013).

https://doi.org/10.1103/PhysRevB.88.121304

M. Feneberg, K. Thonke, T. Wunderer, F. Lipski, F. Scholz. Piezoelectric polarization of semipolar and polar GaInN quantum wells grown on strained GaN templates. J. Appl. Phys. 107, 103517 (2010).

https://doi.org/10.1063/1.3374704

S.H. Park. Piezoelectric and Spontaneous Polarization effects on many-body optical gain of wurtzite InGaN/GaN polarization effects on many-body optical gain of wurtzite quantum well with arbitrary crystal orientation. Jpn. J. Appl. Phys. 42, 5052 (2003).

https://doi.org/10.1143/JJAP.42.5052

M. Lopez, F. Sacconi, M. Auf der Maur, A. Pecchia, A. Di Carlo. Atomistic simulation of InGaN/GaN quantum disk LEDs. Opt. Quant. Electron. 44, 89 (2012).

https://doi.org/10.1007/s11082-012-9554-3

M. Auf der Maur. Multiscale approaches for the simulation of InGaN/GaN LEDs. J. Comput. Electron. 14, 989 (2015).

https://doi.org/10.1007/s10825-015-0683-3

M. Auf der Maur, F. Sacconi, A. Pecchia, A. Di Carlo. The multiscale paradigm in electronic device simulation. IEEE Trans. Electron. Dev. 58, 1425 (2011).

https://doi.org/10.1109/TED.2011.2114666

R. Cingolani, A. Botchkarev, H. Tang, H. Morkoc, G. Traetta, G. Coli, M. Lomascolo, A. Di Carlo, F. Della Sala, P. Lugli. Spontaneous polarization and piezoelectric field in GaN/Al015Ga0.85N quantum wells: Impact on the optical spectra. Phys. Rev. B 61, 2711 (2000).

Q.Y. Wei, T. Li, Z.H. Wu, F.A. Ponce. In-plane polarization of GaN-based heterostructures with arbitrary crystal orientation. Phys. Status Solidi B 207, 2226 (2010).

https://doi.org/10.1002/pssa.200925632

M.A. Caro, S. Schulz, E.P. O'Reilly. Effect of alloy fluctuations on the local polarization in nitride nanostructures. Phys. Status Solidi B 249, 526 (2012).

https://doi.org/10.1002/pssb.201100402

M.A. Caro, S. Schulz, E.P. O'Reilly. Theory of local electric polarization and its relation to internal strain: Impact on polarization potential and electronic properties of groupIII nitrides. Phys. Rev. B 88, 214103 (2013).

https://doi.org/10.1103/PhysRevB.88.214103

F. Grosse, J. Neugebauer. Limits and accuracy of valence force field models for InxGa1−xN alloys. Phys. Rev. B 63, 085207 (2001).

https://doi.org/10.1103/PhysRevB.63.085207

M. Lopuszynski, J.A. Majewski. Composition dependence of elastic constants in wurtzite AlGaInN alloys. J. Appl. Phys. 111, 033502 (2012).

https://doi.org/10.1063/1.3678002

D. Camacho, Y.M. Niquet. Application of Keating's valence force field model to non-ideal wurtzite materials. Physica E 42, 1361 (2010).

https://doi.org/10.1016/j.physe.2009.11.035

A.V. Zinovchuk, E.A. Sevost'yanov. Optimized valence force field model for the lattice properties of non-ideal IIInitride wurtzite materials. Physica E 574, 411682 (2019).

https://doi.org/10.1016/j.physb.2019.411682

I. Vurgaftman, J.R. Meyer, L.R. Ram-Mohan. Band parameters for III-V compound semiconductors and their alloys. J. Appl. Phys. 89, 5815 (2001).

https://doi.org/10.1063/1.1368156

C. Pryor, J. Kim, L.W. Wang, A.J. Williamson, A. Zunger. Comparison of two methods for describing the strain profiles in quantum dots. J. Appl. Phys. 83, 2548 (1998).

https://doi.org/10.1063/1.366631

J.M. Wagner, F. Bechstedt. Properties of strained wurtzite GaN and AlN: Ab initio studies. Phys. Rev. B 66, 115202 (2002).

https://doi.org/10.1103/PhysRevB.66.115202

Ph.E. Gill, W. Murray, M.H. Wright. Practical Optimization (Academic Press, 1981).

F. Bernardini, V. Fiorentini. Spontaneous versus piezoelectric polarization in III-V nitrides: conceptual aspects and practical consequences. Phys. Status Solidi B 216, 391 (1999).

https://doi.org/10.1002/(SICI)1521-3951(199911)216:1<391::AID-PSSB391>3.0.CO;2-K

Published

2023-03-12

How to Cite

Zinovchuk, A., Stepanchikov, D., Vasylieva, R., & Slipokurov, V. (2023). Fluctuations of Piezoelectric Polarization in III-Nitride Quantum Wells. Ukrainian Journal of Physics, 68(1), 47. https://doi.org/10.15407/ujpe68.1.47

Issue

Section

Semiconductors and dielectrics