Spectral Characteristics of Passivated CdTe Quantum Dots with Coordinate-Dependent Parameters

Authors

  • I.M. Kupchak V. Lashkarev Institute of Semiconductor Physics, NAS of Ukraine
  • D.V. Korbutyak V. Lashkarev Institute of Semiconductor Physics, NAS of Ukraine

DOI:

https://doi.org/10.15407/ujpe68.1.38

Keywords:

quantum dots, coordinate-dependent effective mass, cadmium telluride

Abstract

Theoretical studies of the energy spectrum of quantum dots are often carried out using the effective mass approximation with the parameters of the calculation set by the corresponding values of the bulk material of both the dot itself and its surroundings. In this study, the effective mass is a coordinate-dependent function, and its dependence on the coordinate is determined by the atomic structure of the quantum dot, which, in turn, is calculated by the density functional method. Both an unpassivated quantum dot and one passivated with thiol-glycolic acid are considered.

References

D. Korbutiak, O. Kovalenko, S. Budzuliak, O. Melnychuk. Nanostructures of A2B6 semiconductors: Monograph (Nizhyn Mykola Gogol State University, 2020) [ISBN: 978-617-527-223-7].

Z. Pan, H. Rao, I. Mora-Ser'o, J. Bisquert, X. Zhong. Quantum dot-sensitized solar cells. Chem. Soc. Rev. 47, 7659 (2018).

https://doi.org/10.1039/C8CS00431E

Y. Zhou, H. Zhao, D. Ma, F. Rosei. Harnessing the properties of colloidal quantum dots in luminescent solar concentrators. Chem. Soc. Rev. 47, 5866 (2018).

https://doi.org/10.1039/C7CS00701A

H. Zhao, F. Rosei. Colloidal Quantum dots for solar technologies. Chem. 3, 229 (2017).

https://doi.org/10.1016/j.chempr.2017.07.007

D. Korbutyak, O. Kovalenko, S. Budzulyak, S. Kalytchuk, I. Kupchak. Light-emitting properties of A2B6 semiconductor quantum dots. Ukr. J. Phys. Reviews 7, 48 (2012).

A. Dmytruk, I. Dmitruk, Y. Shynkarenko, R. Belosludov, A. Kasuya. ZnO nested shell magic clusters as tetrapod nuclei. RSC Adv. 7, 21933 (2017).

https://doi.org/10.1039/C7RA01610G

N.V. Bondar, M.S. Brodyn, N.A. Matveevskaya, T.G. Beynik. Efficient and sub-nanosecond resonance energy transfer in close-packed films of ZnSe quantum dots by steadystate and time-resolved spectroscopy. Superlattices and Microstructures 138, 106382 (2020).

https://doi.org/10.1016/j.spmi.2019.106382

A.E. Raevskaya, O.L. Stroyuk, D.I. Solonenko, V.M. Dzhagan, D. Lehmann, S.Y. Kuchmiy, V.F. Plyusnin, D.R.T. Zahn. Synthesis and luminescent properties of ultrasmall colloidal CdS nanoparticles stabilized by Cd(II) complexes with ammonia and mercaptoacetate. J. Nanopart. Res. 16, 2650 (2014).

https://doi.org/10.1007/s11051-014-2650-5

N. Reilly, M. Wehrung, R.A. O'Dell, L. Sun. Ultrasmall colloidal PbS quantum dots. Mater. Chem. Phys. 147, 1 (2014).

https://doi.org/10.1016/j.matchemphys.2014.04.026

F. Cheng, M. Yu, L. Jia, Q. Tian, J. Zhang, B. Kim, X. Zhao. Ultra-small PbSe quantum dots synthesis by chemical nucleation controlling. J. Wuhan University of Technology-Mater. Sci. Ed. 36, 478 (2021).

https://doi.org/10.1007/s11595-021-2433-7

B. Talluri, E. Prasad, T. Thomas. Ultra-small (r < 2 nm), stable (>1 year) copper oxide quantum dots with wide band gap. Superlattices and Microstructures 113, 600 (2018).

https://doi.org/10.1016/j.spmi.2017.11.044

M. Valakh, V. Dzhagan, A. Raevskaya, S. Kuchmiy. Optical investigations of ultra-small colloidal nanoparticles and heteronanoparticles based on II-VI semiconductors. Ukr. J. Phys. 56, 1080 (2022).

A.L. Rogach, A. Kornowski, M. Gao, A. Eychm¨uller, H. Weller. Synthesis and characterization of a size series of extremely small thiol-stabilized CdSe nanocrystals. J. Phys. Chem. B 103, 3065 (1999).

https://doi.org/10.1021/jp984833b

T. Takagahara. Effects of dielectric confinement and electron-hole exchange interaction on excitonic states in semiconductor quantum dots. Phys. Rev. B 47, 4569 (1993).

https://doi.org/10.1103/PhysRevB.47.4569

I.M. Kupchak, Y.V. Kryuchenko, D.V. Korbutyak, A.V. Sachenko, E.B. Kaganovich, E.G. Manoilov, E.V. Begun. Exciton states and photoluminescence of silicon and germanium nanocrystals in an Al2O3 matrix. Semiconductors 42, 1194 (2008).

https://doi.org/10.1134/S1063782608100096

R. Arraoui, A. Sali, A. Ed-Dahmouny, M. Jaouane, A. Fakkahi. Polaronic mass and non-parabolicity effects on the photoionization cross section of an impurity in a double quantum dot. Superlattices and Microstructures 159, 107049 (2021).

https://doi.org/10.1016/j.spmi.2021.107049

F. Long, W.E. Hagston, P. Harrison, T. Stirner. The structural dependence of the effective mass and Luttinger parameters in semiconductor quantum wells. J. Appl. Phys. 82, 3414 (1997).

https://doi.org/10.1063/1.365657

S.K. Bhattacharya, A. Kshirsagar. Ab initio calculations of structural and electronic properties of CdTe clusters. Phys. Rev. B 75, 035402 (2007).

https://doi.org/10.1103/PhysRevB.75.035402

M.M. Sigalas, E.N. Koukaras, A.D. Zdetsis. Size dependence of the structural, electronic, and optical properties of (CdSe) n, n = 6-60, nanocrystals. RSC Advances 4, 14613 (2014).

https://doi.org/10.1039/C4RA00966E

P.J. Stephens, F.J. Devlin, C.F. Chabalowski, M.J. Frisch. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 98, 11623 (1994).

https://doi.org/10.1021/j100096a001

W.R. Wadt, P.J. Hay. Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. J. Chem. Phys. 82, 284 (1985).

https://doi.org/10.1063/1.448800

M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.H. Jensen, S. Koseki, N. Matsunaga, K.A. Nguyen, S. Su et al. General atomic and molecular electronic structure system. J. Computational Chem. 14, 1347 (1993).

https://doi.org/10.1002/jcc.540141112

P. Giannozzi, O. Baseggio, P. Bonf'a, D. Brunato, R. Car, I. Carnimeo, C. Cavazzoni, S. de Gironcoli, P. Delugas, F. Ferrari Ruffino et al. Quantum ESPRESSO toward the exascale. J. Chem. Phys. 152, 154105 (2020).

https://doi.org/10.1063/5.0005082

J.D. Pack, H.J. Monkhorst. "Special points for Brillouinzone integrations" - a reply. Phys. Rev. B 16, 1748 (1977).

https://doi.org/10.1103/PhysRevB.16.1748

M. Methfessel, A.T. Paxton. High-precision sampling for Brillouin-zone integration in metals. Phys. Rev. B 40, 3616 (1989).

https://doi.org/10.1103/PhysRevB.40.3616

A. Puzder, A. J. Williamson, F. Gygi, G. Galli. Self-healing of CdSe nanocrystals: first-principles calculations. Phys. Revi. Lett. 92, 1 (2004).

https://doi.org/10.1103/PhysRevLett.92.217401

A. Keshavarz, N. Zamani. Optical properties of spherical quantum dot with position-dependent effective mass. Superlattices and Microstructures 58, 191 (2013).

https://doi.org/10.1016/j.spmi.2013.03.014

H. Sari, E. Kasapoglu, S. Sakiroglu, I. S¨okmen, C.A. Duque. Effect of position-dependent effective mass on donor impurity-and exciton-related electronic and optical properties of 2D Gaussian quantum dots. Europ. Phys. J. Plus 137, 341 (2022).

https://doi.org/10.1140/epjp/s13360-022-02491-3

J.-M. L'evy-Leblond. Position-dependent effective mass and Galilean invariance. Phys. Rev. A 52, 1845 (1995).

https://doi.org/10.1103/PhysRevA.52.1845

M. Sebawe Abdalla, H. Eleuch. Exact solutions of the position-dependent-effective mass Schr¨odinger equation. AIP Advances 6, 055011 (2016).

https://doi.org/10.1063/1.4949567

Published

2023-03-12

How to Cite

Kupchak, I., & Korbutyak, D. (2023). Spectral Characteristics of Passivated CdTe Quantum Dots with Coordinate-Dependent Parameters. Ukrainian Journal of Physics, 68(1), 38. https://doi.org/10.15407/ujpe68.1.38

Issue

Section

Semiconductors and dielectrics