Comparison between the Theoretical Calculation of Coulomb Form Factors and Experimental Data for 12C and 20Ne Nuclei

Authors

  • H.M. Dlshad General directorate of education, Sulaimaniyah
  • A.H. Fatah Physics department, College of Science, University of Sulaimani, Sulaimaniyah

DOI:

https://doi.org/10.15407/ujpe68.3.162

Keywords:

inelastic scattering, Coulomb form factor, harmonic oscillator, wave function, core polarization effect

Abstract

The Coulomb form factors for the elastic and inelastic electron-nucleus scatterings have been calculated for 12C and 20Ne nuclei in the ground and excited states with the same parity. We use a microscopic theory involving the effects from high configurations outside the model space, which are called the Core Polarization (CP) effects. For the core polarization matrix elements, the realistic Michigan sum of the three-range Yukawa (M3Y) interaction and the Modified Surface Delta Interaction (MSDI) are used as the two-body interactions. Additionally, the Harmonic Oscillators (HO) potential is applied to calculate wave functions. In the final step, a comparison has been made between the theoretical calculations of Coulomb form factors based on (M3Y) and (MSDI) interactions and the available experimental data. It is noticed that the Coulomb form factors for the (M3Y) interaction give a sensible delineation of the measured data.

References

J.D. Walecka. Electron Scattering for Nuclear and Nucleon Structure (Cambridge University Press, 2001) [ISBN: 0-511-03483-0].

https://doi.org/10.1017/CBO9780511535017

T. de Forest Jr, J.D. Walecka. Electron scattering and nuclear structure. Adv. Phys. 15, 1 (1966).

https://doi.org/10.1080/00018736600101254

A.A. Al-Sammarraie, M.L. Inche Ibrahim, M. Ahmed Saeed, F.I. Sharrad, H. Abu Kassim. Inelastic electric and magnetic electron scattering form factors of Mg nucleus: Role of factors. Int. J. Mod. Phys. E 26, 1750032 (2017).

https://doi.org/10.1142/S021830131750032X

K.S. Jassim. The electron scattering form factor of 10B, 32S and 48Ca nuclei. Phys. Scr. 86, 035202 (2012).

https://doi.org/10.1088/0031-8949/86/03/035202

A. Gottardo, J.J. Valiente-Dob'on, G. Benzoni, R. Nicolini, A. Gadea, S. Lunardi, S. Pietri. New isomers in the full seniority scheme of neutron-rich lead isotopes: The role of effective three-body forces. Phys. Rev. Lett. 109, 162502 (2012).

https://doi.org/10.1103/PhysRevLett.109.162502

R.A. Radhi, A.A. Alzubadi. Study the nuclear form factors of low-lying excited states in nucleus using the shell model with skyrme effective interaction. Few-Body Syst. 60, 57 (2019).

https://doi.org/10.1007/s00601-019-1524-x

A.H. Taqi, R.A. Radhi. Longitudinal form factor of isoscalar particle-hole states in 16O, 12C and 40Ca with M3Y interaction. Turk. J. Phys. 31, 253 (2007).

J. Escher. Electron Scattering Studies in the Framework of the Symplectic Shell Model (Louisiana State University, 1997).

B.R. Barrett. Effective operators in nuclear-structure calculations. J. Phys.: Conference Series 20, 48 (2005).

https://doi.org/10.1088/1742-6596/20/1/008

T.T.S. Kuo, G.E. Brown. Structure of finite nuclei and the free nucleon-nucleon interaction: An application to 18O and 18F. Nucl. Phys. 85, 40 (1966).

https://doi.org/10.1016/0029-5582(66)90131-3

I.N. Sneddon, B.F. Touschek. The excitation of nuclei by electrons. Proc. Math. Phys. Sci. 193, 344 (1948).

https://doi.org/10.1098/rspa.1948.0050

E.M. Lyman, A.O. Hanson, M.B. Scott. Scattering of 15.7 Mev electrons by nuclei. Phys. Rev. 84, 626 (1951).

https://doi.org/10.1103/PhysRev.84.626

V.K. Lukyanov, D.N. Kadrev, E.V. Zemlyanaya, A.N. Antonov, K.V. Lukyanov, M.K. Gaidarov, K. Spasova. Microscopic analysis of 11Li elastic scattering on protons and breakup processes within the 6Li +2n cluster model. Phys. Rev. 2, 034612 (2013).

https://doi.org/10.1142/9789814508865_0014

I.A.H. Ajeel, M.J.R. Aldhuhaibat, K.S. Jassim. Coulomb C2 and C4 Form Factors of 18O, 20,22Ne nuclei using Bohr-Mottelson collective model. Ukr. J. Phys. 67, 110 (2022).

https://doi.org/10.15407/ujpe67.2.110

A.D. Salman, S.A. Al-Ramahi, M.H. Oleiwi. Inelastic electron-nucleus scattering form factors for 64,66,68Zn isotopes. AIP Conf. Proc. 2144, 030029 (2019).

https://doi.org/10.1063/1.5123099

E.M. Raheem, R.O. Kadhim, N.A. Salman. The effects of core polarisation on some even-even sd-shell nuclei using Michigan three-range Yukawa and modified surface delta interactions. Pramana 92, 39 (2019).

https://doi.org/10.1007/s12043-018-1706-y

A.D. Salman, D.R. Kadhim. Longitudinal electron scattering form factors for 54,56Fe. Int. J. Mod. Phys. E 23, 1450054 (2014).

https://doi.org/10.1142/S0218301314500542

B.A. Brown, R. Radhi, B.H. Wildenthal. Electric quadrupole and hexadecupole nuclear excitations from the perspectives of electron scattering and modern shell-model theory. Phys. Rep. 101, 313 (1983).

https://doi.org/10.1016/0370-1573(83)90001-7

A.H. Fatah, R.A. Radhi, N.R. Abdullah. Analytical derivations of single-particle matrix elements in nuclear shell model. Comm. Theo. Phys. 66, 104 (2016).

https://doi.org/10.1088/0253-6102/66/1/104

A.D. Salman, N.M. Adeeb, M.H. Oleiwi. Core polarization effects on the inelastic longitudinal C2 and C4 form factors of 46,48,50Ti nuclei. J. Adv. Phys. part. phys. 3, 20 (2013).

P.J. Brussaard, P.W.M. Glaudemans, P.W.M. Glaudemans. Shell-Model Applications in Nuclear Spectroscopy (North-Holland publishing company, 1977).

T. Suda, H. Simon. Prospects for electron scattering on unstable, exotic nuclei. Pro. Part. Nucl. Phys. 96, 1 (2017).

https://doi.org/10.1016/j.ppnp.2017.04.002

G. Bertsch, J. Borysowicz, H. McManus, W.G. Love. Interactions for inelastic scattering derived from realistic potentials. Nucl. Phys. A 284, 399 (1977).

https://doi.org/10.1016/0375-9474(77)90392-X

S. Mohammadi, B.N. Giv, N.S. Shakib. Energy levels calculations of 24Al and 25Al isotopes. Nucl. Sci. 2, 1 (2017).

J.C. Bergstrom, S.B. Kowalski, R. Neuhausen. Elastic magnetic form factor of 6Li. Phys. Rev. C 25, 1156 (1982).

https://doi.org/10.1103/PhysRevC.25.1156

J.C. Bergstrom, U. Deutschmann, R. Neuhausen. Electron scattering from the 3.65 MeV (0+, T = 1) state in 6Li at high momentum transfer. Nucl. Phys. A 327, 439 (1979).

https://doi.org/10.1016/0375-9474(79)90268-9

T. Brecelj, S.J. Paul, T. Kolar, P. Achenbach, A. Ashkenazi, R. B¨ohm, C. Giusti. Polarization transfer to bound protons measured by quasielastic electron scattering on 12C. Phys. Rev. C, 101(6), 064615 (2020).

https://doi.org/10.1103/PhysRevC.101.064615

I. Sick, J.S. McCarthy. Elastic electron scattering from 12C and 16O. Nucl. Phys. A 150, 631 (1970).

https://doi.org/10.1016/0375-9474(70)90423-9

C.W. De Jager, H. De Vries, C. De Vries. Nuclear chargeand magnetization-density-distribution parameters from elastic electron scattering. At. Data Nucl. Data Tables 14, 479 (1974).

https://doi.org/10.1016/S0092-640X(74)80002-1

J.B. Flanz, R.S. Hicks, R.A. Lindgren, G.A. Peterson, A. Hotta, B. Parker, R.C. York. Convection currents and spin magnetization in E2 transitions of 12C. Phys. Rev. Lett. 41, 1642 (1978).

https://doi.org/10.1103/PhysRevLett.41.1642

S. Mohammadi, M. Mounesi. Energy levels calculations of 30 Si and 31 Si isotopes using OXBASH code. Americ. J. Mod. Phys. 4, 36 (2015).

Y. Horikawa. Deformations of Ground-Bands in Ne20, Mg24 and Si28. I. Prog. Theo. Phys. 47, 867 (1972).

https://doi.org/10.1143/PTP.47.867

B.A. Brown, W. Chung, B.H. Wildenthal. Electromagnetic multipole moments of ground states of stable odd-mass nuclei in the sd shell. Phys. Rev. C 22, 774 (1980).

https://doi.org/10.1103/PhysRevC.22.774

I. Angeli, K.P. Marinova. Table of experimental nuclear ground state charge radii. An update, At. Data Nucl. Data Tables 99, 69 (2013).

https://doi.org/10.1016/j.adt.2011.12.006

Downloads

Published

2023-05-11

How to Cite

Dlshad, H., & Fatah, A. (2023). Comparison between the Theoretical Calculation of Coulomb Form Factors and Experimental Data for 12C and 20Ne Nuclei. Ukrainian Journal of Physics, 68(3), 162. https://doi.org/10.15407/ujpe68.3.162

Issue

Section

Fields and elementary particles