Interaction of Valine with Water Molecules: Raman and DFT Study

Authors

  • A. Jumabaev Sharof Rashidov Samarkand State University
  • U. Holikulov Sharof Rashidov Samarkand State University
  • H. Hushvaktov Sharof Rashidov Samarkand State University
  • A. Absanov Sharof Rashidov Samarkand State University
  • L. Bulavin Taras Shevchenko National University of Kyiv

DOI:

https://doi.org/10.15407/ujpe67.8.602

Keywords:

valine, zwitterion, hydrogen bond, Raman spectra, DFT method

Abstract

Interaction of non-ionized and zwitterionic forms of valine with water molecules is studied using Raman spectroscopy and quantum chemical calculations. An integral equation formalism for the polarizable continuum model (IEF-PCM) for solvent effects is used at the B3LYP/6-311++G(d,p) level of theory. Hydrogen bonding between valine and water molecules is studied by the Atom in Molecule (AIM) and Non-Covalent Interaction (NCI) methods. By comparing the experimental and theoretical Raman spectra of valine in the aqueous medium, the complex of zwitterionic valine with 4 water molecules is found to be the most probable one.

References

S.J. Grabowski. Hydrogen Bonding-New Insight (Springer, 2006).

https://doi.org/10.1007/978-1-4020-4853-1

E.N. Kozlovskaya, G.A. Pitsevich, A.E. Malevich, O.P. Doroshenko, V.E. Pogorelov, I.Yu. Doroshenko, V. Balevicius, V. Sablinskas, A.A. Kamnev. Raman spectroscopic and theoretical study of liquid and solid water within the spectral region 1600-2300 cm−1. SpectroпїЅhim. Acta A 196, 406 (2018).

https://doi.org/10.1016/j.saa.2018.01.071

V. Pogorelov, I. Doroshenko, G. Pitsevich, V. Balevicius, V. Sablinskas, B. Krivenko, L.G.M. Pettersson. From clusters to condensed phase - FT IR studies of water. J. Mol. Liq. 235, 7 (2017).

https://doi.org/10.1016/j.molliq.2016.12.037

G.A. Pitsevich, E.N. Kozlovskaya, A.E. Malevich, I.Yu. Doroshenko, V.S. Satsunkevich, Lars G.M. Pettersson. Some useful correlations for H-bonded systems. Mol. Cryst. Liq. Cryst. 696 (1), 15 (2020).

https://doi.org/10.1080/15421406.2020.1731090

H. Hushvaktov, B. Khudaykulov, A. Jumabaev, I.Yu. Doroshenko, A. Absanov, G. Murodov. Study of formamide molecular clusters by Raman spectroscopy and quantumchemical calculations. Mol. Cryst. Liq. Cryst. in press (2022).

https://doi.org/10.1080/15421406.2022.2068478

T.Y. Nikolaienko, L.A. Bulavin, D.M. Hovorun. Bridging QTAIM with vibrational spectroscopy: The energy of intramolecular hydrogen bonds in DNA-related biomolecules, Phys. Chem. Chem. Phys. 14, 7441 (2012).

https://doi.org/10.1039/c2cp40176b

T.Yu. Nikolaenko, L.A. Bulavin, D.N. Govorun. Quantum mechanical interpretation of the IR Spectrum of 2-deoxy-D-ribose in the oh group stretching vibration region. J. Appl. Spectrosc. 78, 751 (2011).

https://doi.org/10.1007/s10812-011-9528-4

V.I. Petrenko, M.V. Avdeev, L. Alm'asy, L.A. Bulavin, V.L. Aksenov, L. Rosta, V.M. Garamus. Interaction of mono-carboxylic acids in benzene studied by small-angle neutron scattering. Colloids Surf. A: Physicochem. Eng. Asp. 337, 91 (2009).

https://doi.org/10.1016/j.colsurfa.2008.12.001

O.A. Kyzyma, T.O. Kyrey, M.V. Avdeev, M.V. Korobov, L.A. Bulavin, V.L. Aksenov. Non-reversible solvatochromism in N-methyl-2-pyrrolidone/toluene mixed solutions of fullerene C60. Chem. Phys. Lett. 556, 178 (2013).

https://doi.org/10.1016/j.cplett.2012.11.040

J.A. Lima. Raman scattering of L-valine crystals. J. Raman Spectrosc. 36, 1076 (2005).

https://doi.org/10.1002/jrs.1410

F.M. Paiva. J.C. Batista, F.S.C. Rego, J.A. Lima Jr. et al. Infrared and Raman spectroscopy and DFT calculations of DL amino acids: Valine and lysine hydrochloride. J. Mol. Struct. 1127, 419 (2017).

https://doi.org/10.1016/j.molstruc.2016.07.067

G. Zhu, X. Zhu, Q. Fan, X. Wan. Raman spectra of amino acids and their aqueous solutions. Spectrochim. Acta A Mol. Biomol. Spectrosc. 78 (3), 1187 (2011).

https://doi.org/10.1016/j.saa.2010.12.079

B. Hern'andez, F. Pfl¨uger, M. Nsangou, M. Ghomi. Vibrational analysis of amino acids and Short peptides in hydrated media. IV. Amino acids with hydrophobic side chains: L-alanine, L-valine, and L-isoleucine. J. Phys. Chem. B 113 (10), 3169 (2009).

https://doi.org/10.1021/jp809204d

P.K. Sahu, SL. Lee. Effect of microsolvation on zwitterionic glycine: an ab initio and density functional theory study. J. Mol. Model. 14, 385 (2008).

https://doi.org/10.1007/s00894-008-0282-3

A.K. Ojha, N. Vyas, S.P. Dubey. Gas phase structural stability of neutral and zwitterionic forms of alanine in presence of (H2O)n=1−7 clusters: A density functional theory study. J. Theor. Comput. Chem. 1002, 16 (2012).

https://doi.org/10.1016/j.comptc.2012.09.010

S.M. Bachrach. Microsolvation of glycine: A DFT study. J. Phys. Chem. A 112 (16), 3722 (2008).

https://doi.org/10.1021/jp711048c

J.H. Jensen, M.S. Gordon. On the number of water molecules necessary to stabilize the glycine zwitterion. J. Am. Chem. Soc. 117, 8159 (1995).

https://doi.org/10.1021/ja00136a013

R.P. Tudela, D. Marx. Water-induced zwitterionization of glycine: Stabilization mechanism and spectral signatures. J. Phys. Chem. Lett. 7, 5142 (2016).

https://doi.org/10.1021/acs.jpclett.6b02247

W. Wang, X. Pu, W. Zheng, N.-B. Wong, A. Tian. Some theoretical observations on the 1 : 1 glycine zwitterion - water complex. J. Mol. Struct. THEOCHEM 626, 127 (2003).

https://doi.org/10.1016/S0166-1280(03)00075-7

Sh. Yamabe, N. Ono, N. Tsuchida. Molecular interactions between glycine and H2O affording the zwitterion. J. Phys. Chem. A 107, 7915 (2003).

https://doi.org/10.1021/jp030495p

B. Yogeswari, R. Kanakaraju, S. Boopathi, P. Kolandaivel. Microsolvation and hydrogen bond interactions in glycine dipeptide: Molecular dynamics and density functional theory studies. J. Mol. Graph. Mod. 35, 11 (2012).

https://doi.org/10.1016/j.jmgm.2012.02.002

N. Vyas, A.K. Ojha, A. Materny. Simulation of the Raman spectra of zwitterionic glycine + nH2O (n = 1, 2,...,5) by means of DFT calculations and comparison to the experimentally observed Raman spectra of glycine in aqueous medium. Vib. Spectrosc. 55, 69 (2011).

https://doi.org/10.1016/j.vibspec.2010.08.007

J.-Y. Kim, Y. Lee, S. Lee. Effects of microsolvation on the relative stability of zwitterionic vs. canonical proline. Chem. Phys. Lett. 608, 177 (2014).

https://doi.org/10.1016/j.cplett.2014.05.105

J.K. Gochhayat, A. Dey, A.K. Pathak. An ab initio study on the micro- solvation of amino acids: On the number of water molecules necessary to stabilize the zwitter ion. Chem. Phys. Lett. 716, 93 (2019).

https://doi.org/10.1016/j.cplett.2018.12.021

J.-Y. Kim, G.-Y. Won, S. Lee. Effects of microsolvation on the stability of zwitterionic valine. Bull. Korean Chem. Soc. 33, 3797 (2012).

https://doi.org/10.5012/bkcs.2012.33.11.3797

M.J. Frisch et al. Gaussian 09, Gaussian, Inc., Wallingford CT, 2009.

R.F.W. Bader. A quantum theory of molecular structure and its applications. Chem. Rev. 91, 893 (1991).

https://doi.org/10.1021/cr00005a013

T. Lu, F. Chen. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580 (2012).

https://doi.org/10.1002/jcc.22885

W. Humphrey, A. Dalke, K. Schulten. VMD: Visual molecular dynamics. J. Mol. Graph. 14, 33 (1996).

https://doi.org/10.1016/0263-7855(96)00018-5

R.F.W. Bader. Atoms in molecules. Acc. Chem. Res. 18, 9 (1985).

https://doi.org/10.1021/ar00109a003

I. Rozas, I. Alkorta, J. Elguero. Behavior of Ylides containing N, O, and C atoms as hydrogen bond acceptors. Am. Chem. Soc. 122, 11154 (2000).

https://doi.org/10.1021/ja0017864

T.-H. Tang, E. Deretey, S.J. Knak Jensen, I.G. Csizmadia. Hydrogen bonds: Relation between lengths and electron densities at bond critical points. Eur. Phys. J. D 37, 217 (2006).

https://doi.org/10.1140/epjd/e2005-00317-0

Published

2022-12-04

How to Cite

Jumabaev, A., Holikulov, U., Hushvaktov, H., Absanov, A., & Bulavin, L. (2022). Interaction of Valine with Water Molecules: Raman and DFT Study. Ukrainian Journal of Physics, 67(8), 602. https://doi.org/10.15407/ujpe67.8.602

Issue

Section

Physics of liquids and liquid systems, biophysics and medical physics

Most read articles by the same author(s)

<< < 1 2