Influence of a Non-Uniform Electric Field on the Combustion of Liquid Hydrocarbon Fuels


  • A.V. Nimych Military Academy
  • O.Y. Sydorov Odesa I.I. Mechnikov National University
  • V.G. Shevchuk Odesa I.I. Mechnikov National University



liquid fuels, soot formation, electric field, electric breakdown, mass burning rate


The influence of a non-uniform electric fields (a cylindrical capacitor) on the combustion of liquid droplets of such hydrocarbons as benzene, hexane, and methanol, which are characterized by different soot formation degrees, is experimentally studied. It is shown that the applied field can both increase and decrease the fuel mass burning rate depending on the field polarity (direction) and the fuel type. The hysteresis phenomena – the flame lift-off from the droplet and the droplet coverage with flame – and their dependence on the field properties, are described.


T. Ueda, O. Imamura, K. Okai, M. Tsue, M. Kono, J. Sato. Combustion behavior of single droplets for sooting and non-sooting fuels in direct current ele.ctric fields under microgravity. Proc. Combust. Inst. 29, 2595 (2002).

K. Okai, T. Ueda, O. Imamura, M. Tsue, M. Kono, J. Sato, D.L. Dietrich, F.A. Williams. Effects of DC electric fields on combustion of octane droplet pairs in microgravity. Combust. Flame. 136, 390 (2004).

Z.-G. Yuan, U. Hedge, G.M. Faeth. Effects of electric fields on non-buoyant spherical diffusion flames. Combust. Flame. 124, 712 (2001).

S.D. Marcum, B.N. Ganguly. Electric-field-induced flame speed modification. Combust. Flame. 143, 27 (2005).

C. Guerra-Garcia, M. Martinez-Sanchez. Counterflow non premixed flame DC displacement under AC electric field. Combust. Flame. 162, 4254 (2015).

A. Sayed-Kassem, A. Elorf, P. Gillon, M. Idir, B. Sarh, V. Gilard. Numerical modelling to study the effect of DC electric field on a laminar ethylene diffusion flame. Int. Commun. Heat Mass Transf. 122, 105167 (2021).

M.-V. Tran, M.S. Cha. Time evolution of propagating nonpremixed flames in a counterflow, annular slot burner under AC electric fields. Proc. Combust. Inst. 36, 1421 (2017).

M. Simeni Simeni, Y. Tang, Y.-C. Hung, Z. Eckert, K. Frederickson, I.V. Adamovich. Electric field in NS pulse and AC electric discharges in a hydrogen diffusion flame. Combust. Flame. 197, 254 (2018).

Y. Ren, S. Li, W. Cui, Y. Zhang, L. Ma. Low-frequency AC electric field induced thermoacoustic oscillation of a premixed stagnation flame. Combust. Flame 176, 479 (2017).

E.P. Ilchenko, V.G. Shevchuk. Role of charged soot grains in combustion of liquid hydrocarbon fuels in external electric field. Ukr. J. Phys. 50, 144 (2005).

Y. Luo, Z. Jiang, Y. Gan, J. Liang, W. Ao. Evaporation and combustion characteristics of an ethanol fuel droplet in a DC electric field. J. Energy Inst. 98, 216 (2021).

V.V. Kalinchak, A.I. Struchaev, S.G. Orlovskaya, M.I. Chabanov. Flame intertial characteristics of a hydrocarbon droplet during its hysteresis. Combust. Explos. Shock Wav. 26, 81 (1990).

V.E. Glushkov, V.V. Kalinchak, G.I. Sobitnyak, N.V. Fedoseev. Stability of combustion of liquid fuel droplets at various forced convection directions. Fiz. Aerodisp. Sist. 23, 55 (1983) (in Russian).

M. Ackerman, F.A. Williams. Simplified model for droplet combustion in a slow convective flow. Combust. Flame. 143, 599 (2005).



How to Cite

Nimych, A., Sydorov, O., & Shevchuk, V. (2023). Influence of a Non-Uniform Electric Field on the Combustion of Liquid Hydrocarbon Fuels. Ukrainian Journal of Physics, 68(1), 25.



General physics