Effects of Nonlinearities in Physics and Demography

Authors

  • J. Weiland Lehigh University, Bethlehem
  • T. Rafiq Lehigh University, Bethlehem

DOI:

https://doi.org/10.15407/ujpe67.8.574

Keywords:

descriptive words, fundamental nonlinearities in nature, explosive instabilities, fusion research, demographic research

Abstract

Nonlinearities appear in almost all systems. Earlier, we focused on those in plasmas, ionospheric scattering, and the world population. As turned out, the estimate of the population growth made in 1974 is in astonishing agreement with the United Nations estimates and agrees with our present data to within 2%. A particularly important role, both for the population evolution and wave interaction in plasmas, is played by non-Markovian effects (effects depending on the past time). For the population growth, this occurs due to a delay of one generation in the set of population limiting actions, while, for plasmas, it is caused by nonlinear frequency shifts.

References

J. Weiland, H. Wilhelmsson. Coherent Non-Linear Interaction of Waves in Plasmas (Pergamon Press, 1977).

https://doi.org/10.1007/978-1-4757-1571-2_29

B. Coppi. Neoclassical transport and the "principle of profile consistency". Comments Plasma Phys. Cont. Fusion 5, 261 (1980).

J. Weiland, H. Wilhelmsson. On the evolution and saturation of the world population. Physica Scripta 10, 257 (1974).

https://doi.org/10.1088/0031-8949/10/5/012

B. Coppi, M.N. Rosenbluth, R.N. Sudan. Nonlinear interaction of positive and negative energy modes in rarefied plasmas. Annals of Physics 55, 207 (1969).

https://doi.org/10.1016/0003-4916(69)90178-X

L. Stenflo. Kinetic theory of three-wave Interaction in magnetized plasma. J. Plasma Phys. 4, 585 (1970).

https://doi.org/10.1017/S0022377800005250

J. Weiland, H. Wilhelmsson. Repetitive Explosive Instabilities. Phys. Scr. 7, 222 (1973).

https://doi.org/10.1088/0031-8949/7/5/008

V. Fuchs, G. Beaudry. Effect of damping on nonlinear three-wave interaction. J. Math Phys. 16, 616 (1975).

https://doi.org/10.1063/1.522561

A. Hasegawa, K. Mima. Pseudo-three-dimensional turbulence in magnetized nonuniform plasma. Phys. Fluids 21, 87 (1978).

https://doi.org/10.1063/1.862083

T.A. Davydova, A. Pankin. Envelope nonlinear drift structures in a non-equilibrium plasma near the boundary of marginal stability. J. Plasma Physics 59, 179 (1998).

https://doi.org/10.1017/S0022377897006193

T.H. Dupree. A perturbation theory for strong plasma turbulence. Phys. Fluids 9, 1773 (1966).

https://doi.org/10.1063/1.1761932

A. Hasegawa. Plasma Instabilities and Nonlinear Effects (Springer, 1975).

https://doi.org/10.1007/978-3-642-65980-5

N. Mattor, S.E. Parker. Nonlinear kinetic fluid equations. Phys. Rev. Lett. 79, 3419 (1997).

https://doi.org/10.1103/PhysRevLett.79.3419

I. Holod, J. Weiland, A. Zagorodny. Nonlinear fluid closure: Three-mode slab ion temperature gradient problem with diffusion. Phys. Plasmas 9, 1217 (2002).

https://doi.org/10.1063/1.1459710

I. Holod, A. Zagorodny, J. Weiland. Anisotropic diffusion across an external magnetic field and large-scale fluctuations in magnetized plasmas. Phys. Rev. E 71, 045401 (2005),

https://doi.org/10.1103/PhysRevE.71.046401

A. Zagorodny, J. Weiland. Statistical theory of turbulent transport (non-Markovian effects). Phys. Plasmas 6, 2359 (1999).

https://doi.org/10.1063/1.873507

J. Weiland, C.S. Liu, A. Zagorodny. Transition from a coherent three wave system to turbulence with application to the fluid closure. J. Plasma Phys. 81, 905810101 (2015).

https://doi.org/10.1017/S0022377814000269

J. Weiland, A. Zagorodny. On the normalization of transport from ITG modes. Phys. Plasmas 23, 102307 (2016).

https://doi.org/10.1063/1.4964772

J. Weiland, H. Nordman. Drift wave model for inward energy transport in tokamak plasmas. Phys. Fluids B5, 1669 (1993).

https://doi.org/10.1063/1.860801

J. Weiland, A. Zagorodny. Drift wave theory for transport in tokamaks. Rev. Mod. Plasma Phys. 3, 2367 (2019).

https://doi.org/10.1007/s41614-019-0029-x

J. Weiland, A. Zagorodny, T. Rafiq. Theory for transport in magnetized plasmas. Physica Scripta 95, 105607 (2020).

https://doi.org/10.1088/1402-4896/abb85f

H. Nordman, V.P. Pavlenko, J. Weiland. Subcritical reactive drift wave turbulence. Phys. Fluids B 5, 402 (1993).

https://doi.org/10.1063/1.860525

M. Wakatani, A. Hasegawa. A collisional drift wave description of plasma edge turbulence. Phys. Fluids 27, 611 (1984).

https://doi.org/10.1063/1.864660

J.W. Connor, O.P. Pogutse. On the relationship between mixing length and strong turbulence estimates for transport due to drift turbulence. PPCF 43, 155 (2001).

https://doi.org/10.1088/0741-3335/43/2/306

J.P. Mondt, J. Weiland. Two-fluid theory of thermal transport in current carrying edge plasma. Physica Scripta 39, 92 (1989).

https://doi.org/10.1088/0031-8949/39/1/014

J. Weiland, H. Nordman. Proc. Varenna - Lausanne workshop "Theory of Fusion Plasmas", Chexbres 1988 (1988), p. 451

H. Nordman, J. Weiland. Transport due to toroidal ni mode turbulence in tokamaks. Nuclear Fusion 29, 251 (1989).

https://doi.org/10.1088/0029-5515/29/2/008

J. Weiland, A. Jarmen, H. Nordman. Diffusive particle and heat pinch effects in toroidal plasmas. Nuclear Fusion 29, 1810 (1989).

https://doi.org/10.1088/0029-5515/29/10/015

R.E. Waltz, G.D. Kerbel, J. Milovich. Toroidal gyroLandau fluid model turbulence simulations in a nonlinear ballooning mode representation with radial modes. Phys. Plasmas 1, 2229 (1994).

https://doi.org/10.1063/1.870934

T. Rafiq, J. Weiland. Self-consistent core-pedestal ITER scenario modeling. Nucl. Fusion 61, 116005 (2021).

https://doi.org/10.1088/1741-4326/ac2338

Downloads

Published

2022-12-04

How to Cite

Weiland, J., & Rafiq, T. (2022). Effects of Nonlinearities in Physics and Demography. Ukrainian Journal of Physics, 67(8), 574. https://doi.org/10.15407/ujpe67.8.574

Issue

Section

Plasma physics

Most read articles by the same author(s)