First-Principles Investigation of Concentration Effects on the Electronic and Vibrational Properties of a Boron Aluminum Phosphide Alloy with Wurtzoid Nanostructure

Authors

  • H.A. Fayyadh Department of Medical Physics, College of Applied Science, University of Fallujah

DOI:

https://doi.org/10.15407/ujpe67.10.750

Keywords:

BxAl1−xP7 wurtzoid, infrared and raman spectra, nanoscale

Abstract

The vibrational and electronic properties of the binary wurtzoids Al7P7 and B7P7 and the ternary one BxAl7-xP7 have been investigated by the use of the approximation of the Density Functional Theory (DFT). By varying the concentration x, we carried out the calculations and various simulations of the bond lengths, energy gap, density of states, force constants, reduced masses, and infrared and Raman spectra. The geometric nanostructure of BxAl7-xP7 wurtzoid has been analyzed using the Gauss view 05 program. As the concentration of B increases, the energy gap widens, indicating that the estimations are consistent with the experimental longitudinal optical measurements. We utilize the theoretical ab initio technique to mimic the properties and nanostructures of BxAl7-xP7 wurtzoid using DFT B3LYP with the 6-311-G** basis sets and the GGA calculations with all electrons.

References

R.W.G. Wyckoff. Crystal Structures. 2nd Edition (Krieger, 1986).

O. Madelung. Semiconductors: Data Handbook (Springer, 2004) [ISBN: 978-3-642-18865-7].

https://doi.org/10.1007/978-3-642-18865-7

I. Vurgaftman, J.R. Meyer, L.R. Ram-Mohan. Band parameters for III-V compound semiconductors and their alloys. J. Appl. Phys. 89, 5815 (2001).

https://doi.org/10.1063/1.1368156

R.M. Wentzcovitch, M.L. Cohen. Theory of structural and electronic properties of BAs. J. Phys. C Solid State Phys. 19, 6791 (1986).

https://doi.org/10.1088/0022-3719/19/34/016

E. Schroten, A. Geossens, J. Schoonman. Photo- and electro reflectance of cubic boron phosphide. J. Appl. Phys. 83 (3), 1660 (1998).

https://doi.org/10.1063/1.366881

B. Bouhafs, H. Aourag, M. Cartier. Trends in band-gap pressure coefficients in boron compounds BP, BAs, and BSb. J. Phys. Condens. Matter. 12, 5655 (2000).

https://doi.org/10.1088/0953-8984/12/26/312

W.T. Masselink, A.A. Ketterson, J.S. Gedymin, J. Klem, C.K. Peng, W.F. Kopp, H. Morkoc, K.R. Gleason. Characterization of InGaAs/AlGaAs pseudomorphic modulationdoped field-effect transistors. IEEE Trans. on Electron Devices 33, 564 (1986).

https://doi.org/10.1109/T-ED.1986.22533

O. Nemiri, S. Ghemid, Z. Chouahda, H. Meradji, F. El Haj Hassan. Structural, electronic, thermodynamic and thermal properties of zinc blende InP, InAs and their InAsxP1−x ternary alloys via first principles calculations. Int. J. Mod. Phys. B 27 (25), 1350166 (2013).

https://doi.org/10.1142/S021797921350166X

A. Bentouaf, M. Ameri, R. Mebsout, D. Hachemane, Theoretical study of structural, electronic, optical and thermodynamic properties of AlP, InP and AlAs compounds. J. Optoelectron. Adv. Mater. 7 (9-10), 659 (2013).

S. Lakel, F. Okbi, H. Meradji. Optical and electronic properties of BxAl1−xP alloys: A first principles study. Optik 127, 3755 (2016).

https://doi.org/10.1016/j.ijleo.2015.12.147

Huihui Ma, Junqin Zhang, Bin Zhao, Qun Wei, Yintang Yang. First-principles study on mechanical and elastic properties of BxAl1−xP alloys. AIP Advances 7, 065007 (2017).

https://doi.org/10.1063/1.4985254

M.N. Rasul, A. Anam, M. Atif Sattar, A. Manzoor, A. Hussain. DFT based structural, electronic and optical properties of B1−xInxP (x = 0.0, 0.25, 0.5, 0.75, 1.0) compounds: PBE-GGA vs. mBJ-approaches. Chin. J. Phys. 56, 2659 (2018).

https://doi.org/10.1016/j.cjph.2018.10.022

D.M. Hoat, J.F. Rivas Silva, A. Mendez Blas. First principles study on structural, electronic and optical properties of Ga1−xBxP ternary alloys (x = 0, 0.25, 0.5, 0.75 and 1). Phys. Lett. 382, 19421949 (2018).

https://doi.org/10.1016/j.physleta.2018.05.014

V.A. Fock. Fundamental of Quantum Mechanics (Mir publishers, 1986).

R.D. Johnson III. NIST Computational Chemistry Comparison and Benchmark Database (Reference Database Number 101 Release, 1999).

M.T. Hussein, T.A. Fayad, M.A. Abdulsattar. Concentration effects on electronic and spectroscopic properties of ZnCdS wurtzoids: A Density functional theory study. Chalcogenide Lett. 16 (11), 557 (2019).

M.T. Hussein, H.A. Thjeel. Study of geometrical and electronic properties of ZnS wurtzoids via DFT. Chalcogenide Lett. 15 (10), 523 (2018).

A. Frisch, H.P. Hratchian, R.D. Dennington, II, T.A. Keith, J. Millam, A.B. Nielsen, A.J. Holder, J. Hiscocks. GaussView Version 5.0 (Gaussian Inc., 2009).

M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov et al. Gaussian 09 (Gaussian Inc., 2009).

V.P. Kumar, A.Y. Sharma, D.K. Sharma, D.K. Dwivedi. Effect of sintering aid (CdCl2) on the optical and structural properties of CdZnS screen-printed film. Opt. Int. J. Light Electron. Optics 125, 1209 (2014).

https://doi.org/10.1016/j.ijleo.2013.07.158

T.P. Sharma, D. Patidar, N.S. Saxena, K. Sharma. Measurement of structural and optical band gaps of Cd1−xZnx (x = 4 and 6) nanomaterials. Indian J. Pure Appl. Phys. 44 (2), 125 (2006).

M.A. Mahdi, S.K. Al-Ani. Optical characterization of chemical bath deposition Cd1−xZnxS thin films. Int. J. Nanoelectron. Mater. 5, 11 (2012).

Saif Ullah, Pablo A. Denis,and Fernando Sato. Hydrogenation and fluorination of 2d boron phosphide and boron arsenide: A density functional theory investigation., ACS Omega 3, 16416 (2018).

https://doi.org/10.1021/acsomega.8b02605

K.J. Chang, S. Froyen, M.L. Cohen. Electronic band structures for zinc-blende and wurtzite CdS. Phys. Rev. B 28, 4736 (1983).

https://doi.org/10.1103/PhysRevB.28.4736

S. Farid, M.A. Stroscio, M. Dutta. Multiphonon Raman scattering and photoluminescence studies of CdS nanocrystals grown by thermal evaporation. Super Lattices and Microstructures 115, 204 (2018).

https://doi.org/10.1016/j.spmi.2018.01.024

O. Brafman, G. Lengyel, S.S. Mitra. Raman spectra of AlN, cubic BN and BP. SolLd State Communications 6, 523 (1968).

https://doi.org/10.1016/0038-1098(68)90503-6

H.W. Leite Alves, K. Kunc. Lattice dynamics of boron phosphide. J. Phys.: Condens. Marter. 4, 6603 (1992).

https://doi.org/10.1088/0953-8984/4/31/012

S.Q. Wang, H.Q. Ye. Ab initio investigation of the pressure dependences of phonon and dielectric properties for III-V semiconductors. J. Phys.: Condens. Matter. 17, 4475 (2005).

https://doi.org/10.1088/0953-8984/17/28/007

H.A. Fayyadh. Stability, Structural and Electronic properties of indium phosphide wurtzite-diamantane molecules and nanocrystals: A density functional theory study. J. Nano Research 69, 1 (2021).

https://doi.org/10.4028/www.scientific.net/JNanoR.69.1

M.M. Habib, M.T. Hussein. Study the electronic and spectroscopic properties of AlxB7−xN7 Wurtzoids as a function of size and concentration using density functional theory. Materials Today: Proceedings 42, 2353 (2021).

https://doi.org/10.1016/j.matpr.2020.12.327

Downloads

Published

2023-01-04

How to Cite

Fayyadh, H. (2023). First-Principles Investigation of Concentration Effects on the Electronic and Vibrational Properties of a Boron Aluminum Phosphide Alloy with Wurtzoid Nanostructure. Ukrainian Journal of Physics, 67(10), 750. https://doi.org/10.15407/ujpe67.10.750

Issue

Section

Structure of materials