Steady-State Spectroscopy and Sub-Nanosecond Resonance Transfer of Exciton Excitation Energy in the Aqueous Solutions and Films of ZnSe Nanocrystals
DOI:
https://doi.org/10.15407/ujpe67.7.544Keywords:
exciton excitation energy, exciton, ZnSe, nanocrystalAbstract
Densely packed solid films of semiconductor nanocrystals (NCs) demonstrate specific optoelectronic properties owing to the strong quantum interaction between the NCs and the hybridization of exciton orbitals. This fact opens ways for creating new artificial light-harvesting complexes and photovoltaic structures with the spatial separation of electrons and holes. This work was aimed at the study of colloidal solutions and solid films of thioglycerol-stabilized ZnSe NCs by measuring their steady-state and time-resolved optical spectra. Relaxation and recombination of excitons via the surface and defect states of electrons and holes were found to prevail in NC solutions, whereas the quantum (internal) channel exciton relaxation dominates in NC films, which, according to the results of time-resolved measurements of photoluminescence spectra, is associated with the rapid (sub-nanosecond) transfer of exciton excitation energy in the films from smaller NCs to larger ones. Furthermore, intragap exciton states of two types were revealed in small ZnSe NCs after the oxidation and hydroxylation of their surface, as well as their unusual “dependence” on the NC size.
References
M. Achermann, M.A. Petruska, D.D. Koleske, M.H. Crawford, V. I. Klimov. Nanocrystal-based light-emitting diodes utilizing high-efficiency nonradiative energy transfer for color conversion. Nano Lett. 6, 1396 (2006).
https://doi.org/10.1021/nl060392t
R.D. Harris, S.B. Homan et al. Electronic processes within quantum dot-molecule complexes. Chem. Rev. 116, 12865 (2016).
https://doi.org/10.1021/acs.chemrev.6b00102
N. Hildebrandt, Ch.M. Spillmann, W.R. Algar et al. Energy transfer with semiconductor quantum dot bioconjugates: A versatile platform for biosensing, energy harvesting, and other developing applications. Chem.Rev. 117, 536 (2017).
https://doi.org/10.1021/acs.chemrev.6b00030
P. Nagpal, V.I. Klimov. Role of mid-gap states in charge transport and photoconductivity in semiconductor nanocrystals films. Nat. Comm. 2, 486 (2011).
https://doi.org/10.1038/ncomms1492
J. Min, Ying Zhang, Y. Zhou, D. Xu, Ch. S. Garoufalis, Z. Zeng, H. Shen, S. Baskoutas, Yu Jia, Z. Du. Size engineering of trap effects in oxidized and hydroxylated ZnSe quantum dots. Nano Lett. 22, 3604 (2022).
https://doi.org/10.1021/acs.nanolett.2c00118
V.V. Nikesh, A.D. Lad, S. Kimura, Sh. Nozaki. Electron energy levels in ZnSe quantum dots. J. Appl. Phys. 100, 113520 (2006).
https://doi.org/10.1063/1.2397289
Min Gao, H. Yang, H. Shen, Zaiping Zeng, Fengjia Fan, Beibei Tang, Jingjing Min, Ying Zhang, Qingzhao Hua, Lin Song Li, Botao Ji, Zuliang Du. Bulk-like ZnSe quantum dots enabling efficient ultranarrow blue light-emitting diodes. Nano Lett. 21, 7252 (2021).
https://doi.org/10.1021/acs.nanolett.1c02284
W. Jaskolski, G.W. Brayany et al. Artificial molecules. Int. J. Quant. Chem. 90, 1075 (2002).
https://doi.org/10.1002/qua.10331
D. Jasrasaria, J.P. Philbin, Ch. Yan, D. Weinberg, A.P. Alivisatos, E. Rabani. Sub-bandgap photoinduced transient absorption features in CdSe nanostructures: The role of trapped holes. J. Phys. Chem. C 124, 17372 (2020).
https://doi.org/10.1021/acs.jpcc.0c04746
B.R. Watson, W.B. Doughty, T.R. Calhoun. Energetics at the surface: Direct optical mapping of core and surface electronic structure in CdSe quantum dots using broadband electronic sum frequency generation microspectroscopy. Nano Lett. 19, 6157 (2019).
https://doi.org/10.1021/acs.nanolett.9b02201
A. Veamatahau, B. Jiang, T. Seifert, S. Makuta, K. Latham, M. Kanehara, T. Teranishi, Y. Tachibana. Origin of surface trap states in CdS quantum dots: Relationship between size dependent photoluminescence and sulfur vacancy trap states. Phys. Chem. Chem. Phys. 17, 2850 (2015).
https://doi.org/10.1039/C4CP04761C
K. de L. Kristiansena, A. Woutersea, A. Philipse. Simulation of random packing of binary sphere mixtures by mechanical contraction. Physica A 358, 249 (2005).
https://doi.org/10.1016/j.physa.2005.03.057
Z. Lingley, S. Lu, A. Madhukar. The dynamics of energy and charge transfer in lead sulfide quantum dot solids. J. Appl. Phys. 115, 084302 (2014).
https://doi.org/10.1063/1.4866368
J.E. Lewis, S. Wu, X.J. Jiang. Unconventional gap state of trapped exciton in lead sulfide quantum dots. Nanotechnology 21, 455402 (2010).
https://doi.org/10.1088/0957-4484/21/45/455402
M. Abdellah, K.J. Karki, N. Lenngren et al. Ultra longlived radiative trap states in CdSe quantum dots. J. Phys. Chem. C 118, 21682 (2014).
https://doi.org/10.1021/jp506536h
Jian Zhang, Xiaomei Jiang. Confinement-dependent below-gap state in PbS quantum dot films probed by continuous-wave photoinduced absorption. J. Phys. Chem. B 112, 9557 (2008).
https://doi.org/10.1021/jp8047295
N.V. Bondar, M.S. Brodyn, O.V. Tverdokhlibova, N.A. Matveevskaya, T.G. Beynik. Influence of a capping ligand on the band gap and excitonic levels in colloidal solutions and films of ZnSe quantum dots. Ukr. J. Phys. 64, 425 (2019).
https://doi.org/10.15407/ujpe64.5.425
N.V. Bondar, M.S. Brodyn, N.A. Matveevskaya, T.G. Beynik. Efficient and sub-nanosecond resonance energy transfer in close-packed films of ZnSe quantum dots by steady-state and time-resolved spectroscopy. Superlatt. Microstruct. 130, 106382 (2020).
https://doi.org/10.1016/j.spmi.2019.106382
S. Lu, A. Madhukar. Nonradiative resonant excitation transfer from nanocrystal quantum dots to adjacent quantum channels. Nano Lett. 7, 3443 (2007).
https://doi.org/10.1021/nl0719731
J. Giblin, M. Kuno. Nanostructure absorption: A comparative study of nanowire and colloidal quantum dot absorption cross sections. J. Phys. Chem. Lett. 1, 3340 (2010).
https://doi.org/10.1021/jz1013104
S.F. Wuister, C. de Mello Donega, A. Meijerink. Influence of thiol capping on the exciton luminescence and decay kinetics of CdTe and CdSe quantum dots. J. Phys. Chem. B 108, 17393 (2004).
https://doi.org/10.1021/jp047078c
Y. Hinuma, A. Gruneis, G. Kresse, F. Oba. Band alignment of semiconductors from density-functional theory and many-body perturbation theory. Phys. Rev. B 90, 155405 (2014).
https://doi.org/10.1103/PhysRevB.90.155405
Bo Li, P.J. Brosseau, D.P. Strandell, T.G. Mack, P. Kambhampati. Photophysical action spectra of emission from semiconductor nanocrystals reveal violations to the vavilov rule behavior from hot carrier effects. J. Phys. Chem. C 123, 5092 (2019).
https://doi.org/10.1021/acs.jpcc.8b11218
A.D. Dukes, M.A. Schreuder, J.A. Sammons et al. Pinned emission from ultrasmall cadmium selenide nanocrystals. J. Chem. Phys. 129, 121102 (2008).
https://doi.org/10.1063/1.2983632
G.A. Beane, A.J. Morfa, A.M. Funston, P. Mulvaney. Defect-mediated energy transfer between ZnO nanocrystals and a conjugated dye. J. Phys. Chem. C 116, 3305 (2012).
https://doi.org/10.1021/jp209638g
J.B. Hoffman, H. Choi, P.V. Kamat. Size-dependent energy transfer pathways in CdSe quantum dot-squaraine lightharvesting assemblies: F¨orster versus Dexter. J. Phys. Chem. C 118, 18453 (2014).
Downloads
Published
How to Cite
Issue
Section
License
Copyright Agreement
License to Publish the Paper
Kyiv, Ukraine
The corresponding author and the co-authors (hereon referred to as the Author(s)) of the paper being submitted to the Ukrainian Journal of Physics (hereon referred to as the Paper) from one side and the Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, represented by its Director (hereon referred to as the Publisher) from the other side have come to the following Agreement:
1. Subject of the Agreement.
The Author(s) grant(s) the Publisher the free non-exclusive right to use the Paper (of scientific, technical, or any other content) according to the terms and conditions defined by this Agreement.
2. The ways of using the Paper.
2.1. The Author(s) grant(s) the Publisher the right to use the Paper as follows.
2.1.1. To publish the Paper in the Ukrainian Journal of Physics (hereon referred to as the Journal) in original language and translated into English (the copy of the Paper approved by the Author(s) and the Publisher and accepted for publication is a constitutive part of this License Agreement).
2.1.2. To edit, adapt, and correct the Paper by approval of the Author(s).
2.1.3. To translate the Paper in the case when the Paper is written in a language different from that adopted in the Journal.
2.2. If the Author(s) has(ve) an intent to use the Paper in any other way, e.g., to publish the translated version of the Paper (except for the case defined by Section 2.1.3 of this Agreement), to post the full Paper or any its part on the web, to publish the Paper in any other editions, to include the Paper or any its part in other collections, anthologies, encyclopaedias, etc., the Author(s) should get a written permission from the Publisher.
3. License territory.
The Author(s) grant(s) the Publisher the right to use the Paper as regulated by sections 2.1.1–2.1.3 of this Agreement on the territory of Ukraine and to distribute the Paper as indispensable part of the Journal on the territory of Ukraine and other countries by means of subscription, sales, and free transfer to a third party.
4. Duration.
4.1. This Agreement is valid starting from the date of signature and acts for the entire period of the existence of the Journal.
5. Loyalty.
5.1. The Author(s) warrant(s) the Publisher that:
– he/she is the true author (co-author) of the Paper;
– copyright on the Paper was not transferred to any other party;
– the Paper has never been published before and will not be published in any other media before it is published by the Publisher (see also section 2.2);
– the Author(s) do(es) not violate any intellectual property right of other parties. If the Paper includes some materials of other parties, except for citations whose length is regulated by the scientific, informational, or critical character of the Paper, the use of such materials is in compliance with the regulations of the international law and the law of Ukraine.
6. Requisites and signatures of the Parties.
Publisher: Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine.
Address: Ukraine, Kyiv, Metrolohichna Str. 14-b.
Author: Electronic signature on behalf and with endorsement of all co-authors.