Study of the Neon Dielectric Barrier Discharge on a Capacitively Coupled Radio Frequency at a Low Pressure with Metastable Atom Density: Effect of the Pressure


  • A. Bouchikhi University of Sa¨ıda, Faculty of technology, Department of electrical engineering



capacitively coupled, RF glow discharge, Gauss law, dielectric barrier discharges


We study the neon dielectric barrier discharge with metastable atom density on a capacitively coupled radio frequency at a pressure of about 4–12 Torr. The transport parameters of neon are dependent on the electron energy, and their range is about 0.04–50 eV. A one-dimensional fluid model and the drift-diffusion theory are used to describe the neon dielectric barrier discharge. The effect of the gas pressure on the properties of neon dielectric barrier discharge is presented for the cycle-averaged regime. It is shown that the particle densities, electric potential, and metastable atom density increase with the pressure. In addition, the surface charge concentration and the gap voltage increase as well.


T. Samir, Y. Liu, L.-L. Zhao, Y.-W. Zhou. Effect of driving frequency on electron heating in capacitively coupled RF argon glow discharges at low pressure. Chin. Phys. B 26, 115201 (2017).

L.-L. Zhao, Y. Liu, T. Samir. Effects of gas pressure on plasma characteristics in dual frequency argon capacitive glow discharges at low pressure by a self-consistent fluid model. Chin. Phys. B 26, 125201 (2017).

M. Meyyappan, J.P.L. Kreskovsky. Glow discharge simulation through solutions to the moments of the Boltzmann transport equation. J. Appl. Phys. 68, 1506 (1990).

B. Hechelef, A. Bouchikhi. Current-voltage characteristics in a helium-argon gas mixture glow discharge at low pressure. Acta Physica Polonica A 136, 855 (2019).

M.M. Becker, D. Loffhagen. Enhanced reliability of drift-diffusion approximation for electrons in fluid models for nonthermal plasmas. AIP Advances 3, 012108 (2013).

T. Alili, A. Bouchikhi, M. Rizouga. Investigations of argon and neon abnormal glow discharges in the presence of metastable atom density with fluid model. Can. J. Phys. 94, 731 (2016).

M.M. Becker, D. Loffhagen W. Schmidt. A stabilized Finite Element Method for Modeling of gas Discharges. Comp. Phys. Com. 180, 1230 (2009).

B. Hechelef, A. Bouchikhi. Identification of the normal and abnormal glow discharge modes in a neon-xenon gas mixture at low pressure. Plasma Sci. Tech. 20, 115401 (2018).

Abdelaziz Bouchikhi. Physical proprieties of DC glow discharges in a neon-argon gas mixture. Can. J. Phys. 96, 62 (2018).

A. Bouchikhi. Nonlocal ionization theory and secondary electron emission coefficient: Application in helium and neon DC microdischarge at high pressure. IEEE Trans. Plasma Science 9, 4260 (2019).

A. Bouchikhi. Modeling of a DC glow discharge in a neon-xenon gas mixture at low pressure and with metastable atom densities. Plasma Sci. Tech. 19, 095403 (2017).

Y. Lin, R.A. Adomaitis. Simulation and model reduction methods for an RF plasma glow discharge. J. Comp. Phys. 171, 731 (2001).

D. Loffhagen, M.M. Becker, A.K. Czerny, J. Philipp, C. Klages. Impact of hexamethyldisiloxane admixtures on the discharge characteristics of a dielectric barrier discharge in argon for thin film deposition. Contrib. Plasma Phys. 58, 337 (2018).

S. Ponduri, M.M. Becker, S. Welzel, M.C.M. van de Sanden, D. Loffhagen, R. Engeln. Fluid modelling of CO2 dissociation in a dielectric barrier discharge. J. Appl. Phys. 119, 093301 (2016).

H. Hoft, M. Kettlitz, M.M. Becker, T. Hoder, D. Loffhagen, R. Brandenburg, K.-D. Weltmann. Breakdown characteristics in pulsed-driven dielectric barrier discharges: Influence of the pre-breakdown phase due to volume memory effects. J. Phys. D: Appl. Phys. 47, 465206 (2014).

E. Eslami, A. Barjasteh, N. Morshedian. Numerical investigation of the effect of driving voltage pulse shapes on the characteristics of low-pressure argon dielectric barrier discharge. Plasma Phys. Rep. 41, 519 (2015).

M. M. Becker, T. Hoder, R. Brandenburg, D. Loffhagen. Analysis of microdischarges in asymmetric dielectric barrier discharges in argon. J. Phys. D: Appl. Phys. 46, 355203 (2013).

T. Samir, Y. Liu, L.-L. Zhao. Study on effect of neutral gas pressure on plasma characteristics in capacitive RF argon glow discharges at low pressure by fluid modeling. IEEE Trans. Plasma Sci. 46, 1738 (2018).

Q. Liu, Y. Liu, T. Samir, Z. Ma. Numerical study of effect of secondary electron emission on discharge characteristics in low pressure capacitive RF argon discharge. Phys. Plasmas 21, 083511 (2014).

M.M. Becker, H. K¨ahlert, A. Sun, M. Bonitz, D. Loffhagen. Advanced fluid modeling and PIC/MCC simulations of low-pressure ccrf discharges. Plasma Sources Sci. Tech. 26, 044001 (2017).

A. Barjasteh, E. Eslami. Numerical investigation of effect of driving voltage pulse on low pressure 90%Ar-10%Cl2 dielectric barrier discharge. Plasma Chem. Plasma Process 38, 261 (2018).

A. Barjasteh, E. Eslami, N. Morshedian. Experimental investigation and numerical modeling of the effect of voltage parameters on the characteristics of low-pressure argon dielectric barrier discharges. Phys. of Plasmas 22, 073508 (2015).

N.B. Kolokolov, A.A. Kudrjavtsev, A.B. Blagoev. Interaction processes with creation of fast electrons in the low temperature plasma. Phys. Scri. 50, 371 (1994).

E.W. Pike. On the mean lifetime of metastable neon atoms. Phys. Rev. 49, 513 (1936).

G.J.M. Hagelaar, L.C. Pitchford. Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models. Plasma Sources Sci. Tech. 14, 722 (2005).

L. Vriens, A.H.M. Smeets. Cross-section and rate formulas for electron-impact ionization, excitation, deexcitation, and total depopulation of excited atoms. Phys. Rev. A 22, 940 (1980).

W.V. Gaens, A. Bogaerts. Kinetic modelling for an atmospheric pressure argon plasma jet in humid air. J. Phys. D Appl. Phys. 47, 079502 (2014).

A. Bouchikhi, A. Hamid. 2D DC subnormal glow discharge in argon. Plasma Sci. Tech. 12, 59 (2010).

A. Bouchikhi. Two-dimensional numerical simulation of the DC glow discharge in the normal mode and with Einstein's relation of electron diffusivity. Plasma Sci. Tech. 14, 965 (2012).

G.J.M. Hagelaar, G.M.W. Kroesen, U. van Slooten, H. Schreuders. Modeling of the microdischarges in plasma addressed liquid crystal displays. J. Appl. Phys. 88, 2252 (2000).

V.E. Golant, A.P. Zilinskij, I.E. Sacharov, S.C. Brown. Fundamentals of Plasma Physics (Wiley, 1980).

D.L. Scharfetter, H.K. Gummel. Large-signal analysis of a silicon read diode oscillator. IEEE Trans. Elec. Dev. 16, 64 (1969).

A. Bouchikhi. Proposition of a new geometry of the electrodes in a particular discharge. Indian J. Phys. 94, 353 (2020).

A. Bouchikhi. Parametric study on the DC microdischarge in a 90%helium-10%xenon gas mixture at intermediate pressure. Indian J. Phys. 96, 1443 (2022).

L.S. Frost. Effect of Variable ionic mobility on ambipolar diffusion. Phys. Rev. 105, 354 (1957).

Ph. Belenguer, J.P. Boeuf. Transition between different regimes of rf glow discharges. Phys. Rev. A 41, 4447 (1990).

V. Lisovskiy, V. Yegorenkov, E. Artushenko, J-P. Booth, S. Martins, K. Landry, D. Douai, V. Cassagne. Normal regime of the weak-current mode of an rf capacitive discharge. Plasma Sources Sci. Tech. 22, 015018 (2013).

S.K. Park, D.J. Economou. Parametric study of a radiofrequency glow discharge using a continuum model. J. Appl. Phys. 68, 4888 (1990).

M. Meyyappan, T.R. Govindan. Radio frequency discharge modeling: Moment equations approach. J. Appl. Phys. 74, 2250 (1993).

S.W. Hwang, H.-J. Lee, H.J. Lee. Effect of electron Monte Carlo collisions on a hybrid simulation of a low-pressure capacitively coupled plasma. Plasma Sources Sci. Tech. 23, 065040 (2014).

M. Surendra, D. Vender. Collisionless electron heating by radio-frequency plasma sheaths. Appl. Phys. Lett. 65, 153 (1994).

M. Surendra, D. Graves, L. Plano. Self consistent dc glow - discharge simulations applied to diamond film deposition reactors. J. Appl. Phys. 71, 5189 (1992).




How to Cite

Bouchikhi, A. (2022). Study of the Neon Dielectric Barrier Discharge on a Capacitively Coupled Radio Frequency at a Low Pressure with Metastable Atom Density: Effect of the Pressure. Ukrainian Journal of Physics, 67(7), 504.



Plasma physics