Features of Mechanisms of Electrical Conductivity in Semiconductive Solid Solution Lu1 – xScxNiSb

Authors

  • V.V. Romaka Technische Universit¨at Dresden
  • V.A. Romaka Lviv Polytechnic National University
  • Y.V. Stadnyk Ivan Franko National University of Lviv
  • L.P. Romaka Ivan Franko National University of Lviv
  • P.Y. Demchenko Ivan Franko National University of Lviv
  • V.Z. Pashkevych Lviv Polytechnic National University
  • A.M. Horyn Ivan Franko National University of Lviv

DOI:

https://doi.org/10.15407/ujpe67.5.370

Keywords:

electrical conductivity, thermopower coefficient, Fermi level, semiconductor

Abstract

A comprehensive study of the crystal and electronic structures, thermodynamic, electrokinetic, energy, and magnetic properties of the semiconductive solid solution Lu1-xScxNiSb, x = 0 – 0.10, revealed the possibility of doping Sc atoms of different crystallographic sites depending on their concentration. This leads to the generation of structural defects of donor and/or acceptor nature and the appearance of the corresponding energy levels (bands) in the band gap єg. The ratio of ionized donors and acceptors (degree of compensation) determines the position of the Fermi level єF in Lu1-xScxNiSb. The dependence of the rate of generation of energy levels and the position of the Fermi level єF on the impurity concentration Sc, which determines the mechanism of electrical conductivity of Lu1-xScxNiSb, is established. The investigated Lu1-xScxNiSb solid solution is a promising thermoelectric material.

References

I. Karla, J. Pierre, R.V. Skolozdra. Physical properties and giant magnetoresistance in RNiSb compounds. J. Alloys Compd. 265, 42 (1998).

https://doi.org/10.1016/S0925-8388(97)00419-2

V.V. Romaka, L. Romaka, A. Horyn, P. Rogl, Yu. Stadnyk, N. Melnychenko, M. Orlovskyy, V. Krayovskyy. Peculiarities of thermoelectric half-Heusler phase formation in Gd-Ni-Sb and Lu-Ni-Sb ternary systems. J. Solid State Chem. 239, 145 (2016).

https://doi.org/10.1016/j.jssc.2016.04.029

V.V. Romaka, L. Romaka, A. Horyn, Yu. Stadnyk. Experimental and theoretical investigation of the Y-Ni-Sb and Tm-Ni-Sb systems. J. Alloys Compd. 855, 157334 (2021).

https://doi.org/10.1016/j.jallcom.2020.157334

K. Hartjes, W. Jeitschko. Crystal structure and magnetic properties of the lanthanoid nickel antimonides LnNiSb (Ln = La-Nd, Sm, Gd-Tm, Lu). J. Alloys Compd. 226, 81 (1995).

https://doi.org/10.1016/0925-8388(95)01573-6

V.A. Romaka, Yu. Stadnyk, L. Romaka, V. Krayovskyy, A. Нoryn, P. Klyzub, V. Pashkevych. Study of structural, electrokinetic and magnetic characteristics of the Er1−xZrxNiSb Semiconductor. J. Phys. Chem. Sol. State.

, 69 (2020).

V.A. Romaka, Yu.V. Stadnyk, L.P. Romaka, V.Z. Pashkevych, V.V. Romaka, A.M. Horyn, P.Yu. Demchenko. Study of structural, thermodynamic, energy, kinetic and magnetic properties of thermoelectric material Lu1−xZrxNiSb. J. Thermoelectricity. 1, 32 (2021).

V.A. Romaka, Yu. Stadnyk, L. Romaka, A. Horyn, V. Pashkevych, H. Nychyporuk, P. Garanyuk. Investigation of thermoelectric material based on Lu1−xZrxNiSb solid solution. I. Experimental Results. J. Phys. Chem. Sol. State. 23, 235 (2022).

https://doi.org/10.15330/pcss.23.2.235-241

V.A. Romaka, Yu.V. Stadnyk, V.Ya. Krayovskyy, L.P. Romaka, O.P. Guk, V.V. Romaka, M.M. Mykyychuk, A.M. Horyn. The Latest Heat-Sensitive Materials and Temperature Transducers (Lviv Polytechnic Publishing House, 2020) [in Ukrainian] [ISBN 978-966-941-478-6].

V.A. Romaka, Yu. Stadnyk, L. Romaka, V. Krayovskyy, P. Klyzub, V. Pashkevych, A. Нoryn, P. Garanyuk. Synthesis and electrical transport properties of Er1−xScxNiSb semiconducting solid solution. J. Phys. Chem. Sol. State. 22, 146 (2021).

https://doi.org/10.15330/pcss.22.1.146-152

I. Wolaсska, K. Synoradzki, K. Ciesielski, K. Zaiкski, P. Skokowski, D. Kaczorowski. Enhanced thermoelectric power factor of half-Heusler solid solution Sc1−xTmxNiSb prepared by high-pressure high-temperature sintering method. Mater. Chem. and Phys. 29 (2019).

https://doi.org/10.1016/j.matchemphys.2019.01.056

N.F. Mott, E.A. Davis. Electron Processes in Non-Crystalline Materials (Clarendon Press, 1979).

B.I. Shklovskii, A.L. Efros. Electronic properties of doped semiconductors (Springer, 1984).

https://doi.org/10.1007/978-3-662-02403-4

V.A. Romaka, E.K. Hlil, Ya.V. Skolozdra, P. Rogl, Yu.V. Stadnyk, L.P. Romaka, A.M. Goryn. Features of the mechanisms of generation and "Healing" of structural defects in the heavily doped intermetallic semiconductor n-ZrNiSn. Semiconductors. 43, 1115 (2009).

https://doi.org/10.1134/S1063782609090024

V.P. Babak, V.V. Shchepetov. Wear resistance of amorphous-crystalline coatings with lubricants. J. Friction and Wear. 39, 38 (2018).

https://doi.org/10.3103/S1068366618010038

T. Roisnel, J. Rodriguez-Carvajal. WinPLOTR: A windows tool for powder diffraction patterns analysis. Mater. Sci. Forum, Proc. EPDIC7 378-381 (2001).

https://doi.org/10.4028/www.scientific.net/MSF.378-381.118

V.L. Moruzzi, J.F. Janak, A.R. Williams. Calculated Electronic Properties of Metals (Pergamon Press, 1978).

H. Akai. Fast Korringa-Kohn-Rostoker coherent potential approximation and its application to FCC Ni-Fe systems. J. Phys.: Condens. Matter. 1, 8045 (1989).

https://doi.org/10.1088/0953-8984/1/43/006

The Elk code An all-electron full-potential linearised augmented-plane wave (LAPW) code. http://elk.sourceforge.net.

K. Synoradzki, K. Ciesielski, I. Veremchuk, H. Borrmann, P. Skokowski, D. Szymanski, Y. Grin, D. Kaczorowski. Thermal and electronic transport properties of the HalfHeusler phase ScNiSb. Materials. 12, 1723 (2019).

https://doi.org/10.3390/ma12101723

Downloads

Published

2022-08-29

How to Cite

Romaka, V., Romaka, V., Stadnyk, Y., Romaka, L., Demchenko, P., Pashkevych, V., & Horyn, A. (2022). Features of Mechanisms of Electrical Conductivity in Semiconductive Solid Solution Lu1 – xScxNiSb. Ukrainian Journal of Physics, 67(5), 370. https://doi.org/10.15407/ujpe67.5.370

Issue

Section

Semiconductors and dielectrics

Most read articles by the same author(s)