Dilatometric Study of LiNH4SO4 Crystals with Manganese Impurity

Authors

  • R.S. Brezvin Ivan Franko National University of Lviv
  • O.Ya. Kostetskyi Ivan Franko National University of Lviv
  • V.Yo. Stadnyk Ivan Franko National University of Lviv
  • P.A. Shchepanskyi Ivan Franko National University of Lviv, Lviv Polytechnic National University
  • O.M. Horina Lviv Polytechnic National University, Lviv State University of Life Safety
  • M.Ya. Rudysh Ivan Franko National University of Lviv, Lviv Polytechnic National University, Jan Dlugosz University in Che˛stochowa, Lesya Ukrainka Volyn National University
  • A.O. Shapravskyi Ivan Franko National University of Lviv

DOI:

https://doi.org/10.15407/ujpe67.7.536

Keywords:

crystal, impurity, thermal expansion, phase transition, differential thermal analysis

Abstract

A crystal of lithium-ammonium sulfate with a manganese impurity of 5% has been synthesized and its structural parameters (the atomic coordinates and the unit cell parameters) have been specified. The introduction of the impurity was found to change the absolute values of the thermal expansion coefficient Δl/l0, but not its behavior. Furthermore, a negative thermal expansion along the specimen Z direction is revealed near the phase transition point. It is shown that the introduction of the impurity shifts the phase transition point toward lower temperatures from 461 K (for the pure crystal) to 455.7 K (for the impurity-doped crystal), reduces the linear expansion coefficient αi in the interval of positive thermal expansion, increases it in the interval of negative thermal expansion, and extends the temperature interval, where the thermal expansion coefficient is negative. Indicative surfaces of the thermal expansion coefficient in the ferroelectric and paraelectric phases have been plotted. The independent study and the verification of the phase transition have been performed with the use of the method of differential thermal analysis.

References

P. Tomaszewski. Polytypism of alpha-LiNH4SO4 crystals. Solid State Commun. 81, 333 (1992).

https://doi.org/10.1016/0038-1098(92)90821-P

A. Pietraszko, K. Lukaszewicz. Crystal structure of α-LiNH4SO4 in the basic polytypic modification. Pol. J. Chem. 66, 2057 (1992).

H. Mashiyama, H. Kasano. Refined crystal structure of LiNH4SO4 including hydrogen atoms in phases II and III. J. Phys. Soc. Jpn. 62, 155 (1993).

https://doi.org/10.1143/JPSJ.62.155

X. Solans, J. Mata, M.T. Calvet, M. Font-Bardia. X-ray structural characterization, Raman and thermal analysis of LiNH4SO4 above room temperature. J. Phys: Condens. Matter. 11, 8995 (1999).

https://doi.org/10.1088/0953-8984/11/46/303

M. Polomska, B. Hilczer, J. Baran. FIR studies of α and beta polymorphs of LiNH4SO4 single crystals. J. Mol. Struct. 325, 105 (1994).

https://doi.org/10.1016/0022-2860(94)80024-3

M.Ya. Rudysh, V.Yo. Stadnyk, R.S. Brezvin, P.A. Shchepanskyi. Energy band structure of LiNH4SO4 crystals. Phys. Solid State 57, 53 (2015).

https://doi.org/10.1134/S1063783415010254

V.I. Stadnyk, R.S. Brezvin, M.Ya. Rudysh, P.A. Shchepanskyi, V.M. Gaba, Z.A. Kogut. On isotropic states in α-LiNH4SO4 crystals. Opt. Spectrosc. 117, 756 (2014).

https://doi.org/10.1134/S0030400X14110216

N.P. Sabalisck, C. Guzm'an-Afonso, C. Gonz'alez-Silgo, M.E. Torres, J. Pas'an, J. del-Castillo, D. Ramos-Hern'andez, A. Hern'andez-Su'arez, L. Mestres. Structures and thermal stability of the α-LiNH4SO4 polytypes doped with Er3+ and Yb3+. Acta Crystallogr. B 73, 122 (2017).

https://doi.org/10.1107/S2052520616019028

D. Komornicka, M. Wolcyrz, A. Pietraszko. Polymorphism and polytypism of α-LiNH4SO4 crystals. Monte Carlo modeling based on X-ray diffuse scattering. Cryst. Growth Des. 14, 5784 (2014).

https://doi.org/10.1021/cg501044n

T.I. Chekmasova, I.P. Aleksandrova. NMR investigation of the high-pressure phase in LiNH4SO4. Phys. Status Solidi A 49, K185 (1978).

https://doi.org/10.1002/pssa.2210490267

B.O. Hildmann, Th. Hahn, L.E. Crossand, R.E. Newnham. Lithium ammonium sulphate, a polar ferroelastic which is not simultaneously ferroelectric. Appl. Phys. Lett. 27, 103 (1975).

https://doi.org/10.1063/1.88396

M.A. Gaffar, A. Abu El-Fadl. Electric, dielectric and optical studies of the lower phase transition of lithium ammonium sulphate single crystals. Physica B 262, 159 (1999).

https://doi.org/10.1016/S0921-4526(98)00449-9

M.Ya. Rudysh, V.Yo. Stadnyk, P.A. Shchepanskyi, R.S. Brezvin, J. Jedryka, I.V. Kityk. Specific features of refractive, piezo-optic and nonlinear optical dispersions of beta-LiNH4SO4 single crystals. Physica B 508, 411919 (2020).

https://doi.org/10.1016/j.physb.2019.411919

M.Y. Rudysh, M.G. Brik, O.Y. Khyzhun, A.O. Fedorchuk, I.V. Kityk, P.A. Shchepanskyi, V.Y. Stadnyk, G. Lakshminarayana, R.S. Brezvin, Z. Bak, M. Piasecki. Ionicity and birefringence of α-LiNH4SO4 crystals: ab-initio DFT study and X-ray spectroscopy measurements. RSC Adv. 7, 6889 (2017).

https://doi.org/10.1039/C6RA27386F

S. Hirotsu, Y. Kunii, I. Yamamoto, M. Miyamoto, T. Mitsui. Brillouin scattering study of the ferroelectric phase transition in NH4LiSO4. Phys. Soc. Jpn. 50, 3392 (1981).

https://doi.org/10.1143/JPSJ.50.3392

V.Yo. Stadnyk, R.S. Brezvin, M.Ya. Rudysh, P.A. Shchepanskyi, V.Yu. Kurlyak. Piezooptic properties of LiNH4SO4 crystals. Crystallogr. Rep. 60, 388 (2015).

https://doi.org/10.1134/S106377451502025X

M. Polomska, W.Schranz, J. Wolak. Pretransitional effect below the ferroelectric-paraelectric phase transition in beta-LiNH4SO4. J. Phys.: Condens. Matter 11, 4275 (1999).

https://doi.org/10.1088/0953-8984/11/21/313

M.T. Sebastian, R.A. Becker, H. Klapper. X-ray diffraction study of lithium hydrazinium sulfate and lithium ammonium sulfate crystals under a static electric field. J. Appl. Cryst. 24, 1015 (1991).

https://doi.org/10.1107/S0021889891007112

T. Mitsui, T. Oka, Y. Shiroshi, M. Takashigi, K. Ito, S. Sawada. Ferroelectricity in NH4LiSO4. J. Phys. Soc. Jpn. 39, 845 (1975).

https://doi.org/10.1143/JPSJ.39.845

M. Polomska, N.A. Tikhomirova. Domain structure of LiN/H,D/4SO4 revealed by liquid crystal decoration. Ferroelectrics Lett. 44, 205 (1982).

https://doi.org/10.1080/07315178208202395

S. Krishnan, S.J. Raj, R. Robert, S. Ramanand, A.J. Das. Mechanical, theoretical and dielectric studies on ferroelectric lithium ammonium sulphate (LAS) single crystals. Solid State Electron. 52, 1157 (2008).

https://doi.org/10.1016/j.sse.2008.03.015

J. Chen, L. Hu, J. Deng, X. Xing. Negative thermal expansion in functional materials: controllable thermal expansion by chemical modifications. Chem. Soc. Rev. 44, 3522 (2015).

https://doi.org/10.1039/C4CS00461B

B.C. Venkata Reddy, G. Sankaiz Kupak, I. Aruna Kunari. Electronic absorption spectrum of Cu2+ ions doped in lithium ammonium sulphate crystal. Ferroelectrics Lett. 7, 43 (1987).

https://doi.org/10.1080/07315178708200511

M. Gaafar, M.E. Kassem, S.H. Kandil. Phase transition in lithium ammonium sulphate doped with cesium metal ions. Solid State Commun. 115, 509 (2000).

https://doi.org/10.1016/S0038-1098(00)00216-7

M.A. Gaffar, A. Abu E1 Fadl, A. Galal Mohamed. Specific heat and electrical resistivity of pure and doped lithiumammonium sulphate single crystals. Physica B 217, 274 (1996).

https://doi.org/10.1016/0921-4526(95)00886-1

M.A. Gaffar, Galal A. Mohamed, A. Abu EI-Fadl, A.M. Mebed. Thermal properties of pure and doped lithium-ammonium sulphate single crystals. Physica B 205, 224 (1995).

https://doi.org/10.1016/0921-4526(94)00291-3

A. Hadni, R. Thomas. Observation of domain wall motions in alanine doped triglycine sulphate ferroelectric crystal. Appl. Phys. 10, 91 (1976).

https://doi.org/10.1007/BF00929533

A. Hadni, R. Thomas. Localized irreversible thermal switching of spontaneous polarization in ferroelectrics by laser. Ferroelectrics 7, 87 (1974).

https://doi.org/10.1080/00150197408237987

U. Robels, J.H.Calderwood. Shift and deformation of the hysteresis curve of ferroelectrics by defects: An electrostatic model. J. Appl. Phys. 77, 4002 (1995).

https://doi.org/10.1063/1.359511

R.B. Matviiv, M.Ya. Rudysh, V.Yo. Stadnyk, A.O. Fedorchuk, P.A. Shchepanskyi, R.S. Brezvin, O.Y. Khyzhun. Structure, refractive and electronic properties of K2SO4 : Cu2+ (3%) crystals. Curr. Appl. Phys. 21, 80 (2021).

https://doi.org/10.1016/j.cap.2020.09.015

V.Yo. Stadnyk, R.B. Matviiv, M.Ya. Rudysh, R.S. Brezvin, P.A. Shchepanskyi, B.V. Andrievskii. Refractive parameters and band energy structure of K2SO4 crystals doped with copper. J. Appl. Spectrosc. 87, 143 (2020).

https://doi.org/10.1007/s10812-020-00975-7

O.S. Kushnir, P.A. Shchepanskyi, V.Yo. Stadnyk, A.O. Fedorchuk. Relationships among optical and structural characteristics of ABSO4 crystals. Opt. Mater. 95, 109221 (2019).

https://doi.org/10.1016/j.optmat.2019.109221

M.O. Romanyuk. Workshop on Crystal Optics and Crystal Physics (Lviv Nat. Univ., 2012) (in Ukrainian).

S.I. Novikova. Thermal Expansion of Solids (Nauka, 1974) (in Russian).

I.M. Shmytko, N.S. Afonikova, V.I. Torgashev. Anomalous states of the structure of (NH4)2SO4 crystals in the temperature range 4.2-300 K. Phys. Solid State 44, 2309 (2002).

https://doi.org/10.1134/1.1529929

I.M. Shmytko, N.S. Afonikova, V.I. Torgashev. Anomalous states of the crystal structure of (Rb0.1(NH4)0.9)2SO4 solid solutions in the temperature range 4.2-300 K. Phys. Solid State 44, 2165 (2002).

https://doi.org/10.1134/1.1521474

Published

2022-11-26

How to Cite

Brezvin, R., Kostetskyi, O., Stadnyk, V., Shchepanskyi, P., Horina, O., Rudysh, M., & Shapravskyi, A. (2022). Dilatometric Study of LiNH4SO4 Crystals with Manganese Impurity. Ukrainian Journal of Physics, 67(7), 536. https://doi.org/10.15407/ujpe67.7.536

Issue

Section

Semiconductors and dielectrics

Most read articles by the same author(s)