Analysis of Elastic Scattering Cross-Sections of Carbon Isotopes (10–16C) Using Different Nucleon-Nucleon Interactions

Authors

  • M. Aygun Department of Physics, Bitlis Eren University

DOI:

https://doi.org/10.15407/ujpe67.6.383

Keywords:

nucleon-nucleon interaction, relativistic mean field, optical model, double folding model

Abstract

 In this study, the comparative analysis of different nucleon-nucleon interactions is carried out in the framework of the optical model. The real potential is obtained using the double folding model for eight different nucleon-nucleon interactions which consist of B, G1, G2, SL, R3Y(HS), R3Y(Z), R3Y(W), and R3Y(L1). The results are compared with M3Y nucleonnucleon results, as well as the experimental data in order to perform a comparative study. The similarities and differences of the nucleon-nucleon interactions are discussed, and alternative nucleon-nucleon interactions are proposed for the analysis of carbon isotopes (10-16C).

References

G. Bertsch, J. Borysowich, A. McManus, W.G. Love. Interactions for inelastic scattering derived from realistic potentials. Nucl. Phys. A 284, 399 (1977).

https://doi.org/10.1016/0375-9474(77)90392-X

W.G. Greenless, G.J. Pyle, Y.C. Tang. Nuclear-matter radii from a reformulated optical model. Phys. Rev. 171, 1115 (1968).

https://doi.org/10.1103/PhysRev.171.1115

J.B. Ball, C.B. Fulmer, E.E. Gross, M.K. Halbert, D.C. Hensley, C.A. Ludemann, M.J. Saltmarsh, G.R. Satchler. Heavy ion elastic scattering survey: (I). 208Pb target. Nucl. Phys. A 252, 208 (1975).

https://doi.org/10.1016/0375-9474(75)90613-2

G.R. Satchler, Direct Nuclear Reactions (Oxford University Press, 1983).

C.J. Horowitz, B.D. Serot. Self-consistent hartree description of finite nuclei in a relativistic quantum field theory. Nucl. Phys. A 368, 503 (1981).

https://doi.org/10.1016/0375-9474(81)90770-3

P.G. Reinhard. The relativistic mean-field description of nuclei and nuclear dynamics. Rep. Prog. Phys. 52, 439 (1989).

https://doi.org/10.1088/0034-4885/52/4/002

M. Kaur, A. Quddus, A. Kumar, M. Bhuyan, S.K. Patra. On the symmetry energy and deformed magic number at N = 100 in rare earth nuclei. J. Phys. G: Nucl. Part. Phys. 47, 105102 (2020).

https://doi.org/10.1088/1361-6471/ab92e4

B. Singh, M. Bhuyan, S.K. Patra, R.K. Gupta. Optical potential obtained from relativistic-mean-field theorybased microscopic nucleonпїЅnucleon interaction: Applied to cluster radioactive decays. J. Phys. G: Nucl. Part. Phys. 39, 025101 (2012).

https://doi.org/10.1088/0954-3899/39/2/025101

B.B. Sahu, S.K. Singh, M. Bhuyan, S.K. Biswal, S.K. Patra. Importance of nonlinearity in the NN potential. Phys. Rev. C 89, 034614 (2014).

https://doi.org/10.1103/PhysRevC.89.034614

M. Bhuyan, R. Kumar, S. Rana, D. Jain, S.K. Patra, B.V. Carlson. Effect of density and nucleon-nucleon potential on the fusion cross section within the relativistic mean field formalism. Phys. Rev. C 101, 044603 (2020).

https://doi.org/10.1103/PhysRevC.101.044603

G.R. Satchler, W.G. Love. Folding model potentials from realistic interactions for heavy-ion scattering. Phys. Rep. 55, 183 (1979).

https://doi.org/10.1016/0370-1573(79)90081-4

R.K. Gupta, D. Singh, W. Greiner. Semiclassical and microscopic calculations of the spin-orbit density part of the Skyrme nucleus-nucleus interaction potential with temperature effects included. Phys. Rev. C 75, 024603 (2007).

https://doi.org/10.1103/PhysRevC.75.024603

S. Hossain, M.N.A. Abdullah, Md.Z. Rahman, A.K Basak, F.B. Malik. Non-monotonic potentials for 6Li elastic scattering at 88 MeV. Phys. Scr. 87, 015201 (2013).

https://doi.org/10.1088/0031-8949/87/01/015201

M. El-Azab Farid, M.A. Hassanain. Density-independent folding analysis of the 6,7 Li elastic scattering at intermediate energies. Nucl. Phys. A 678, 39 (2000).

https://doi.org/10.1016/S0375-9474(00)00313-4

W. Zou, Y. Tian, Z.Yu Ma. Microscopic optical potential for α-nucleus elastic scattering in a Dirac-Brueckner-Hartree-Fock approach. Phys. Rev. C 78, 064613 (2008).

https://doi.org/10.1103/PhysRevC.78.064613

J. Cook. DFPOT - A program for the calculation of double folded potentials. Commun. Comput. Phys. 25, 125 (1982).

https://doi.org/10.1016/0010-4655(82)90029-7

I.J. Thompson. Coupled reaction channels calculations in nuclear physics. Comput. Phys. Rep. 7, 167 (1988).

https://doi.org/10.1016/0167-7977(88)90005-6

M. Aygun. Comprehensive research of 10C nucleus using different theoretical approaches. Ukr. J. Phys. 66, 8 (2021).

https://doi.org/10.15407/ujpe66.8.653

M. Aygun. A comprehensive study on the internal structure and the density distribution of 12Be. Rev. Mex. Fis. 62, 336 (2016).

M. Aygun. A microscopic analysis of elastic scattering of 8Li nucleus on different target nuclei. Acta Phys. Pol. B 45, 1875 (2014).

https://doi.org/10.5506/APhysPolB.45.1875

S.Yu. Mezhevych, A.T. Rudchik, K. Rusek, K.W. Kemper, S. Kliczewski, E.I. Koshchy, A.A. Rudchik, S.B. Sakuta, J. Choi'nski, B. Czech, R. Siudak, A. Szczurek. Elastic and inelastic scattering of 14C+11B versus 12,13C + 11B. Eur. Phys. J. A 50, 4 (2014).

https://doi.org/10.1140/epja/i2014-14004-3

J. Boguta, A.R. Bodmer. Relativistic calculation of nuclear matter and the nuclear surface. Nucl. Phys. A 292, 413 (1977).

https://doi.org/10.1016/0375-9474(77)90626-1

http://nrv.jinr.ru/nrv/

J.D. Ovejas, A. Knyazev, I. Martel, O. Tengblad, M.J.G. Borge, J. Cederkall, N. Keeley, K. Rusek, C. Garc'ıa-Ramos, T. P'erez, L.A. Acosta, A.A. Arokiaraj, M. Babo, T. Cap, N. Ceylan and et al. Study of the scattering of 15C at energies around the Coulomb barrier. J. Phys.: Conf. Ser. 1643, 012095 (2020).

https://doi.org/10.1088/1742-6596/1643/1/012095

Downloads

Published

2022-10-27

How to Cite

Aygun, M. (2022). Analysis of Elastic Scattering Cross-Sections of Carbon Isotopes (10–16C) Using Different Nucleon-Nucleon Interactions. Ukrainian Journal of Physics, 67(6), 383. https://doi.org/10.15407/ujpe67.6.383

Issue

Section

Fields and elementary particles