Generalized Uncertainty Principle and Delta-Function Potential

Authors

  • S. Paramanik Department of Physics, National Institute of Technology Durgapur
  • A. Nag Department of Physics, National Institute of Technology Durgapur
  • S. Sahoo Department of Physics, National Institute of Technology Durgapur

DOI:

https://doi.org/10.15407/ujpe67.8.568

Keywords:

generalized uncertainty principle, delta-function potential well, minimal length

Abstract

In recent studies, the Heisenberg uncertainty principle has been modified into the generalized uncertainty principle (GUP) to explain gravity from a quantum mechanical perspective. Here, we study the GUP corrections to the bound-state energy eigenvalues for a delta-function potential well and a double delta-function potential well using nonrelativistic quantum mechanical tools. Transmission probabilities for scattering states have also been derived and compared with the unmodified cases for both systems.

References

D.J. Gross. Strings at super Planckian energies: In search of the string symmetry.Philos Trans. R. Soc. A 329, 1605 (1989).

https://doi.org/10.1098/rsta.1989.0086

C. Rovelli, L. Smolin. Discreteness of area and volume in quantum gravity. Nucl. Phys. B 442, 593 (1995).

https://doi.org/10.1016/0550-3213(95)00150-Q

G. Amelino-Camelia. Relativity in spacetimes with shortdistance structure governed by an observer-independent (Planckian) length scale. Int. J. Mod. Phys. D 11, 35 (2002).

https://doi.org/10.1142/S0218271802001330

A.F. Ali, M.M. Khalil, E.C. Vagenas. Minimal length in quantum gravity and gravitational measurements. Europhys. Lett. 112, 20005 (2015).

https://doi.org/10.1209/0295-5075/112/20005

L.N. Chang, D. Minic, N. Okamura, T. Takeuchi. Exact solution of the harmonic oscillator in arbitrary dimensions with minimal length uncertainty relations. Phys. Rev. D 65, 125027 (2002).

https://doi.org/10.1103/PhysRevD.65.125027

F. Brau. Minimal length uncertainty relation and the hydrogen atom. J. Phys. A 32, 7691 (1992).

https://doi.org/10.1088/0305-4470/32/44/308

F.P. Bosso, S. Das. Generalized uncertainty principle and angular momentum. Ann. Phys. 383, 416 (2017).

https://doi.org/10.1016/j.aop.2017.06.003

S. Das, E.C. Vagenas, Phenomenological implications of the generalized uncertainty principle. Can. J. Phys. 87, 233 (2009).

https://doi.org/10.1139/P08-105

G. Blado et al. Effects of the generalised uncertainty principle on quantum tunnelling. Eur. J. Phys. 37, 025401 (2016).

https://doi.org/10.1088/0143-0807/37/2/025401

A. Kempf, G. Mangano, R.B. Mann. Hilbert space representation of the minimal length uncertainty relation. Phys. Rev. D 52, 1108 (1995).

https://doi.org/10.1103/PhysRevD.52.1108

S. Benczik, L. Nam Chang, D. Minic et al. Short distance versus long distance physics: The classical limit of the minimal length uncertainty relation. Phys. Rev. D 66, 026003 (2002).

https://doi.org/10.1103/PhysRevD.66.026003

D.J. Griffiths. Introduction to Quantum Mechanics (Pearson Prentice Hall, 2005).

Downloads

Published

2022-12-04

How to Cite

Paramanik, S., Nag, A., & Sahoo, S. (2022). Generalized Uncertainty Principle and Delta-Function Potential. Ukrainian Journal of Physics, 67(8), 568. https://doi.org/10.15407/ujpe67.8.568

Issue

Section

General physics