Concentration Dependences of Dielectric Parameters of Impurity-Doped K2SO4 Crystals


  • V.Yo. Stadnyk Ivan Franko National University of Lviv
  • P.A. Shchepanskyi Ivan Franko National University of Lviv
  • M.Ya. Rudysh Ivan Franko National University of Lviv
  • R.B. Matviiv Ivan Franko National University of Lviv
  • R.S. Brezvin Ivan Franko National University of Lviv



crystal, impurity, refractive index, birefringence, unit cell, energy band structure, forbidden gap


The influence of a copper impurity with various concentrations on the unit cell parameters, band-energy structure, and refractive characteristics of potassium sulfate crystals has been studied. The unit-cell parameters and volume of impurity-doped crystals are found to increase almost linearly with the growth of the impurity content. At the same time, the refractive indices ni (i = x, y, z) of doped crystals slightly decrease (by about 2.5 × 10−3), but the relations nz > nx > ny and dnz /dλ > dnx/dλ > dny /dλ between them remain unchanged. The energy band structure of crystals with a copper content of 1.7% is calculated. It is found that the forbidden gap decreases, as the impurity concentration increases. Five localized levels corresponding to d-electron states of Cu2+ impurity ions are identified in the band gap. It is established that the top of the valence band is formed by the oxygen p-states, and the bottom of the conduction band by the 3s- and 4s-states of the sulfur and potassium atoms. The localized 4s-states of copper atoms are located at the bottom of the conduction band. The concentration dependences of the density and ionic radius are analyzed.


A.J. Van den Berg, F. Tuinstra. The space group and structure of α-K2SO4. Acta Crystallogr. B 34, 3177 (1978).

S. Shiozaki, A. Sawada, Y. Ishibashi, Y. Takagi. Hexagonal-orthorhombic phase transition and ferroelasticity in K2SO4 and K2SeO4. J. Phys. Soc. Jpn. 43, 1314 (1977).

H. Arnold, W. Kurtz, A. Richter-Zinnius, J. Bethke, G. Heger. The phase transition of K2SO4 at about 850 K. Acta Crystallogr. B 37, 1643 (1981).

T.M. Chen, R.H. Chen. High-temperature structural phase transition of K2SO4 and K2SeO4 crystals studied by X-ray diffraction. J. Solid State Chem. 111, 338 (1994).

K.S. Aleksandrov, B.V. Beznosikov. Structural Phase Transitions in Crystals (Potassium Sulfate Family) (Nauka, 1993) (in Russian).

B.V. Beznosikov, K.S. Aleksandrov. Crystal chemical regularities of changes in structures related to the α-K2SO4 type. Preprint No. 304 (Acad. Sci. USSR, 1985) (in Russian).

B.V. Beznosikov, K.S. Aleksandrov. Regularities in the formation of ABCX4 structures. Preprint No. 463 (Acad. Sci. USSR, 1987) (in Russian).

L.I. Anatychuk. Thermoelements and Thermoelectric Devices (Naukova Dumka, 1979) (in Russian).

A.S. Baltabekov, T.A. Koketaitegi, L.M. Kim. Recombination processes in K2SO4 doped by ions of transitive metals. Educat. Sci. Bord. 2, 131 (2011).

N. Mahadeva, A.S. Etalo. Electrical conductivity and phase transformation studies on pure and doped (Mg2+, Zn2+, Cu2+, and Mn2+) crystals of K2SO4. Can. J. Chem. 53, 1542 (1975),

S. Radhakrishna, E.D. Pande. Transport properties of cobalt-doped potassium sulphate. Phys. Status Solidi A 16, 433 (1973).

B.V.R. Chowdari, P. Venkateswarlu. Electron paramagnetic resonance of Mn2± in K2SO4 single crystal. J. Chem. Phys. 48, 318 (1968).

A.S. Baltabekov, T.A. Koketajtegi, L.M. Kim, B.S. Tagayeva. Radiolisis of crystalohydrates alkaline metals. Nauka i Studia. Physica 2, 91 (2011).

S.B. Anooza, R. Bertramb, D. Klimb. The solid state phase transformation of potassium sulfate. Solid State Commun. 141, 497 (2007).

R.Yu. Abdusabirov, Yu.S. Gryaznov, M.M. Zapirov. Electron paramagnetic resonance of Cu2+ ions in K2SO4. Phys. Solid State 12, 657 (1970).

V.Yo. Stadnyk, R.B. Matviiv, P.A. Shchepanskyi, M.Ya. Rudysh, Z.A. Kogut. Photoelastic properties of potassium sulfate crystals. Phys. Solid State 61, 2130 (2019).

R.B. Matviiv, M.Ya. Rudysh, V.Yo. Stadnyk, A.O. Fedorchuk, P.A. Shchepanskyi, R.S. Brezvin, O.Y. Khyzhun. Structure, refractive and electronic properties of K2SO4 : Cu2+ (3%) crystals. Curr. Appl. Phys. 21, 80 (2021).

V.Y. Stadnyk, R.B. Matviiv, M.Y. Rudysh, R.S. Brezvin, P.A. Shchepanskyi, B.V. Andrievskii. Refractive parameters and band energy structure of K2SO4 crystals doped with copper. J. Appl. Spectrosc. 87, 143 (2020).

V.Yo. Stadnyk, R.B. Matviiv, P.A. Shchepanskyi. Refractive and photoelastic properties of K2SO4 crystals doped with copper. Crystallogr. Rep. 65, 961 (2020).

J.P. Perdew, J.A. Chevary, S.H. Vosko, K. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46, 6671 (1992).

STOE & Cie GmbH, WinXPOW 3.03. Powder Diffraction Software Package (Darmstadt, 2010).

W. Kraus, G. Nolze. POWDER CELL - a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. J. Appl. Crystallogr. 29, 301 (1996).

L. Akselrud, Y. Grin. WinCSD: software package for crystallographic calculations (Version 4). J. Appl. Crystallogr. 47, 803 (2014).

B. Andriyevsky, M. Jask'olski, V.Y. Stadnyk, M.O. Romanyuk, Z.O. Kashuba, M.M. Romanyuk. Electronic band structure and influence of uniaxial stresses on the properties of K2SO4 crystal: ab initio study. Comput. Mater. Sci. 79, 442 (2013).

V.M. Gaba, V.Y. Stadnyk, O.S. Kushnir. Temperature changes of refractive indices of uniaxially compressed K2SO4 crystals. Opt. Spectrosc. 110, 967 (2011).

O.V. Bovgyra, V.I. Stadnyk, O.Z. Chyzh. Energy band structure and refractive properties of LiRbSO4 crystals. Phys. Solid State 48, 1268 (2006).

V.Y. Stadnyk, M.O. Romanyuk, R.S. Brezvin. Optical and electronic parameters of RbNH4SO4 crystals. Ferroelectrics 192, 203 (1997).

M.O. Romanyuk, A.S. Krochuk, I.P. Pashuk. Optics (Lviv Nat. Univ, 2012) (in Ukrainian).

M.O. Romanyuk. Workshop on Crystal Optics and Crystal Physics (Lviv Nat. Univ., 2012) (in Ukrainian).

O.L. Anderson. The relation between refractive index and density of minerals related to the Earth's mantle. J. Geophys. Res. 70, 1463 (1965).

D. Adamowska. Dichte und Lichtbrechung der Moldavite von Nˇechov. J. Contrib. Miner. Petrol. 16, 204 (1967).

S. Maj. On the relationship between refractive index and density for SiO2 polymorphs. Phys. Chem. Miner. 10, 133 (1984).

K. Sangwal, W. Kucharczyk. Relationship between density and refractive index of inorganic solids. J. Phys. D 20, 522 (1987).

O.S. Kushnir, P.A. Shchepanskyi, V.Yo. Stadnyk, A.O. Fedorchuk. Relationships among optical and structural characteristics of ABSO4 crystals. Opt. Mater. 95, 109221 (2019).

J.L. Dhay, J.H. Wernick. Ternary Chalcopyrite Semiconductors: Growth, Electronic Properties and Application (Pergamon Press, 1975).



How to Cite

Stadnyk, V., Shchepanskyi, P., Rudysh, M., Matviiv, R., & Brezvin, R. (2022). Concentration Dependences of Dielectric Parameters of Impurity-Doped K2SO4 Crystals. Ukrainian Journal of Physics, 67(4), 284.



Semiconductors and dielectrics

Most read articles by the same author(s)