Acetone Vapor Sensors Based on Tin Dioxide Doped by Au Nanoparticles


  • E. Ovodok Laboratory of Thin Films Chemistry of Research Institute for Physical Chemical Problems, Belarusian State University
  • V. Kormosh Institute of Analytical Technique, Uzhhorod National University
  • V. Bilanych Department of Applied Physics, Faculty of Physics, Uzhhorod National University
  • M. Ivanovskaya Laboratory of Thin Films Chemistry of Research Institute for Physical Chemical Problems, Belarusian State University



SnO2, gold nanoparticles, acetone gas sensors


The effect of nano-sized gold particles on the adsorption-sensitive properties of SnO2–Au sensors under the detection of acetone vapors has been studied. Different techniques for the preparation of SnO2–Au nanocomposites with an average Au particle size of 2 nm were applied. It has been found that a fivefold increase in the sensor response to acetone vapors and threshold sensitivity (Clim) of 0.1 ppm are achieved by adding gold to tin dioxide in the colloidal form during synthesis. While adding gold in ion form (Au (III)) leads to a growth of the sensor response to acetone vapors by 2.7 times and defines Clim of 0.2 ppm. The slope of the calibration curves of the SnO2–Au sensors allows registering acetone vapors at concentrations ranging from Clim to 5 ppm. This concentration range can be used for the express diagnostics in diabetes. The enhanced sensitivity of SnO2–Au sensors to acetone vapors can be explained by an increase in the adsorption-catalytic activity of tin ions as a result of the modifying effect of sulfate groups and the envolving of highly dispersed gold in the adsorption – catalytic process of oxidation of acetone molecules.


D. Hill, R. Binions. Breath analysis for medical Diagnosis. Inter. J. on Smart Sensing and Intelligent Systems 5, 401 (2012).

B. Buszewski, M. Kesy, T. Ligor, A. Amann. Human exhaled air analytics: Biomarkers of diseases. Biomed. Chromatogr. 21, 553 (2007).

V. Saasa, T. Malwela, M. Beukes, M. Mokgotho, Ch-Pu Liu, B. Mwakikunga. Sensing technologies for detection of acetone in human breath for diabetes diagnosis and monitoring. Diagnostics 8, 12 (2018).

M. Righettoni, A. Tricoli. Toward portable breath acetone analysis for diabetes detection. J. Breath. Res. 5, 037109 (2011).

M. Masikini, M. Chowdhury, O. Nemraoui. Review-metal oxides: Application in exhaled breath acetone chemiresistive sensors. J. Electrochem. Soc. 167, 037537 (2020).

N. Alizadeh, H. Jamalabadi, F. Tavoli. Breath acetone sensors as non-invasive health monitoring systems: A review. IEEE Sensors Journal 20, 5 (2020).

S. Americo, E. Pargoletti, R. Soave, F. Cargnoni, M.I. Trioni, G.L. Chiarello, G. Cerrato, G. Cappelletti. Unveiling the acetone sensing mechanism by WO3 chemiresistors through a joint theory-experiment approach. Electrochimica Acta 371, 137611 (2020).

J. Hu, C. Zou, Y. Su, M. Li, Z. Yang, M. Ge, Y. Zhang. One-step synthesis of 2D C3N4-tin oxide gas sensors for enhanced acetone vapor detection. Sens. Actuators B Chem. 253 641 (2017).

X. Guan, Y. Wang, P. Luo, Y. Yu, D. Chen, X. Li. Incorporating N atoms into SnO2 nanostructure as an approach to enhance gas sensing property for acetone. Nanomaterials 9, 445 (2019).

E. Ovodok, M. Ivanovskaya, D. Kotsikau, V. Kormosh, I. Alyakshev. Kotsikau, V. Kormosh, I. Alyakshev. The structure and the gas sensing properties of nanocrystalline tin dioxide synthesized from tin(II) sulphate physics. Chem. Appl. Nanostr. 313 (2015).

E. Ovodok, M. Ivanovskaya, D. Kotsikau, V. Kormosh, P. Pylyp, V. Bilanych. Structural characterization and gas sensing properties of nano-sized tin dioxide material synthesized from tin(II) sulfate. Ukr. J. Phys. 66, 803 (2021).

M. Ivanovskaya, E. Ovodok, T. Gaevskaya, D. Kotsikau, V. Kormosh, V. Bilanych, M. Micusik. Effect of Au nanoparticles on the gas sensitivity of nanosized SnO2. Mater. Chem. Phys. 258, 123858 (2021).

L.M. Kustov, V.B. Kazansky, F. Figueras, D. Tichit. Investigation of the acidic properties of ZrO2 modified by SO−42 anions. J. Catal. 150, 143 (1994).

C. Guhrenz, A. Wolf, M. Adam, L. Sonntag, S.V. Voitekhovich, S. Kaskel, N. Gaponik, A. Eychm¨uller. Tetrazolestabilized gold nanoparticles for catalytic applications. Z. Phys. Chem. 231, 51 (2017.

A.A. Abokifa, K. Haddad, J. Fortner, C.S. Lo, P. Biswas. Sensing mechanism of ethanol and acetone at room temperature by SnO2 nano-columns synthesized by aerosol routes: theoretical calculations compared to experimental results. J. Mater. Chem. A 6, 2053 (2018).

A. Tricoli, M. Righettoni, A. Teleki. Semiconductor gas sensors: Dry synthesis and application. Angew. Chem. Int. Ed. 49, 7632 (2010).

W. Thoren, D. Kohl, G. Heiland. Kinetic studies of the decomposition of CH3COOH and CH3COOD on SnO2 single crystals. Surface Sci. 162, 402 (1985).

P.G. Harrison, B.M. Maunder. Tin oxide surfaces. Part 11. Infrared study of the chemisorption of ketones on tin(IV) oxide. J. Chem. Soc., Faraday Trans. I 80, 1329 (1984).

A.-K. Elger, C. Hess. Elucidating the mechanism of working SnO2 gas sensors using combined operando UV/Vis, Raman, and IR spectroscopy. Angew. Chem. Int. Ed. 58, 15057 (2019).

Practical surface analysis by Auger and X-ray photoelectron spectroscopy. Edited by D. Briggs, M.P. Seah (John Wiley and Sons Ltd., 1983).

Y. Yang, Y. Wang, S. Yin. Oxygen vacancies confined in SnO2 nanoparticles for desirable electronic structure and enhanced visible light photocatalytic activity. Appl. Surf. Sci. 420, 399 (2017).

S. Shi, D. Gao, Q. Xu, Z. Yang, D. Xue. Singly-charged oxygen vacancy-induced ferromagnetism in mechanically milled SnO2 powders. RSC Advances 4, 45467 (2014).

C.L. Lau, G.K. Wertheim. Oxidation of tin: An ESCA study. J. Vac. Sci. Technol. 15, 622 (1978).

K. Nakamoto. Infrared and Raman spectra of inorganic and coordination compounds (John Wiley & Sons, Ltd., 1986).

S.V. Voitekhovich, A. Wolf, C. Guhrenz, A.S. Lyakhov, L.S. Ivashkevich, M. Adam, N. Gaponik, S. Kaskel, A. Eychmueller. 5-(2-Mercaptoethyl)-1H-tetrazole: Facile synthesis and application for the preparation of water soluble nanocrystals and their gels. Chem. Eur J. 22, 14746 (2016).

F. Berger, E. Beche, R. Berjoan, D. Klein, A. Chambaudet. An XPS and FTIR study of SO2 adsorption on SnO2 surfaces. Appl. Surf. Sci. 93, 9 (1996).

T. Wang, S. Ma, L. Cheng, X. Jiang, M. Zhang, W. Li, W. Jin. Facile fabrication of multishelled SnO2 hollow microspheres for gas sensing application. Materials Letters 164, 56 (2016).

Y. Li, L. Qiao, D. Yan, L. Wang, Y. Zeng, H. Yang. Preparation of Au-sensitized 3D hollow SnO2 microspheres with an enhanced sensing performance. J. Alloys and Compounds 586, 399 (2014).

X. Kou, N. Xie, F. Chen, T. Wang, L. Guo, C. Wang, Q. Wang, J. Ma, Y. Sun, H. Zhang, G. Lu. Superior acetone gas sensor based on electrospun SnO2 nanofibers by Rh doping. Sensors and Actuators B: Chemical 256, 861 (2018).

X. Kou, F. Meng, K. Chen, T. Wang, P. Sun, F. Liu, X. Yan, Y. Sun, F. Liu, K. Shimanoe, G. Lu. High-performance acetone gas sensor based on Ru-doped SnO2 nanofibers. Sensors and Actuators B: Chemical 320, 128292 (2020).

G. Li, Z. Cheng, Q. Xiang, L. Yan, X. Wang, J. Xu. Bimetal PdAu decorated SnO2 nanosheets based gas sensor with temperature-dependent dual selectivity for detecting formaldehyde and acetone. Sensors and Actuators B: Chemical 283, 590 (2019).




How to Cite

Ovodok, E., Kormosh, V., Bilanych, V., & Ivanovskaya, M. (2022). Acetone Vapor Sensors Based on Tin Dioxide Doped by Au Nanoparticles. Ukrainian Journal of Physics, 67(3), 216.



Semiconductors and dielectrics