A Generalization of the Mie Theory for a Sphere with Spatially Dispersive Permittivity

Authors

  • V.V. Datsyuk Taras Shevchenko National University of Kyiv, Faculty of Physics

DOI:

https://doi.org/10.15407/ujpe56.2.122

Keywords:

-

Abstract

The Mie theory is generalized to the case of a sphere with spatially dispersive permittivity with regard for longitudinal electromagnetic waves and transverse ones with a single-valued dependence of the wavenumber on the frequency. The generalized Mie coefficients are determined with the help of the method of additional boundary conditions using the condition of electron opacity of the surface. The theory is applicable for the modeling of optical processes involving metals, does not require to simplify the dependence of the permittivity on the light frequency and wavenumber, and does not apply the electrostatic approximation. A relative error of this approximation in calculating the extinction cross-section of a 10 nm-radius silver sphere is shown to exceed 50% in a wide frequency interval.

References

B.B. Dasgupta and R. Fuchs, Phys. Rev. B 24, 554 (1981).

https://doi.org/10.1103/PhysRevB.24.554

R. Fuchs and F. Claro, Phys. Rev. B 35, 3722 (1987).

https://doi.org/10.1103/PhysRevB.35.3722

P.T. Leung, Phys. Rev. B 42, 7622 (1990).

https://doi.org/10.1103/PhysRevB.42.7622

J. Vielma and P.T. Leung, J. Chem. Phys. 126, 194704 (2007).

https://doi.org/10.1063/1.2734549

P.T. Leung and M.H. Hider, J. Chem. Phys. 98, 5019 (1993).

https://doi.org/10.1063/1.464955

M.H. Hider and P.T. Leung, Phys. Rev. B 66, 195106 (2002).

https://doi.org/10.1103/PhysRevB.66.195106

P.T. Leung and W.S. Tse, Sol. State Comm. 95, 39 (1995).

https://doi.org/10.1016/0038-1098(95)00144-1

Z.E. Goude and P. T. Leung, Sol. Stat. Comm. 143, 416 (2007).

https://doi.org/10.1016/j.ssc.2007.06.015

R. Chang, P.T. Leung, S.H. Lin, and W.S. Tse, Phys. Rev. B 62, 5168 (2000).

https://doi.org/10.1103/PhysRevB.62.5168

R. Chang, H.-P. Chiang, P.T. Leung, D.P. Tsai, and W.S. Tse, Sol. State Commun. 133, 315 (2005).

https://doi.org/10.1016/j.ssc.2004.11.014

R. Chang and P.T. Leung, Phys. Rev. B 73, 125438 (2006).

https://doi.org/10.1103/PhysRevB.73.125438

C. Girard, Phys. Rev. B 45, 1800 (1992).

https://doi.org/10.1103/PhysRevB.45.1800

C. Girard and A. Dereux, Phys. Rev. B 49, 11344 (1994).

https://doi.org/10.1103/PhysRevB.49.11344

B. Labani, M. Boustimi, and J. Baudon, Phys. Rev. B 55, 4745 (1997).

https://doi.org/10.1103/PhysRevB.55.4745

C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

J.A. Stratton, Electromagnetic Theory (McGraw Hill, New York, 1941).

H.C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).

М. Born and E.W. Wolf, Principles of Optics (Pergamon Press, Oxford, 1991).

A. Yildiz, Nuovo Cimento 30, 5740 (1963).

https://doi.org/10.1007/BF02828781

V.B. Gildenburg and I.G. Kondratyev, Radiotekhn. Elektron. 10, 658 (1965).

V.S. Gvozdetskii, A.G. Zagorodnii, I.V. Krivtsun, and I.P. Yakimenko, Preprint ITP 83-167R (Kyiv, 1983).

A. Moroz, Ann. Phys. 315, 352 (2005).

https://doi.org/10.1016/j.aop.2004.07.002

H.T. Dung, L. Kn¨oll, and D.-G. Welsch, Phys. Rev. A 62, 053804 (2000).

https://doi.org/10.1103/PhysRevA.62.053804

L. Novotny, B. Hecht, Principles of Nano-Optics (Cambridge University Press, New York, 2006).

https://doi.org/10.1017/CBO9780511813535

D.D. Smith, K.A. Fuller, J. Opt. Soc. Am. B 19, 2449 (2002).

https://doi.org/10.1364/JOSAB.19.002449

R. Ruppin, Phys. Rev. B 11, 2871 (1975).

https://doi.org/10.1103/PhysRevB.11.2871

R. Ruppin, Opt. Commun. 30, 380 (1979).

https://doi.org/10.1016/0030-4018(79)90375-4

Yu.V. Kryuchenko and V.I. Sugakov, Phys. Stat. Sol. B 111, 177 (1982).

https://doi.org/10.1002/pssb.2221110119

G.S. Agarwal and S. V. ONeil, Phys. Rev. B 28, 487 (1983).

https://doi.org/10.1103/PhysRevB.28.487

S.I. Pekar, Zh. Eksp. Teor. Fiz. 33, 1022 (1957).

S. I. Pekar, Crystal Optics and Additional Light Waves (Benjamin, Menlo Park, CA, 1983).

G.H. Cocoletzi and W.L. Moch'an, Surf. Sci. Rep. 57, 1 (2005).

A. Pack, Ph.D. thesis, Technischen Universit¨at Chemnitz, 2001.

A. Pack, M. Hietschold, and R. Wannemacher, Opt. Commun. 194, 277 (2001).

https://doi.org/10.1016/S0030-4018(01)01310-4

A. Hilger, M. Tenfelde, and U. Kreibig, Appl. Phys. B 73, 361 (2001).

https://doi.org/10.1007/s003400100712

V.P. Drachev, U.K. Chettiar, A.V. Kildishev, H.-K. Yuan, W. Cai, and V.M. Shalaev, Opt. Express 16, 1186 (2008).

https://doi.org/10.1364/OE.16.001186

P.M. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, New York, 1953).

J.M. G'erardy and M. Ausloos, Phys. Rev. B 25, 4204 (1982).

https://doi.org/10.1103/PhysRevB.25.4204

J.D. Eversole and H.P. Broida, Phys. Rev. B 15, 1644 (1977).

https://doi.org/10.1103/PhysRevB.15.1644

A. Curry, W. L. Hwang, and A. Wax, Opt. Express 14, 6536 (2006).

https://doi.org/10.1364/OE.14.006535

C. S¨onnichsen, Ph.D. thesis (Ludwig-Maximilians-Universit¨at, M¨unchen, 2001).

Published

2022-02-16

How to Cite

Datsyuk В. (2022). A Generalization of the Mie Theory for a Sphere with Spatially Dispersive Permittivity. Ukrainian Journal of Physics, 56(2), 122. https://doi.org/10.15407/ujpe56.2.122

Issue

Section

Optics, lasers, and quantum electronics