Suppression of Oscillations by Lévy Noise

Authors

  • A.I. Olemskoi Institute of Applied Physics, Nat. Acad. of Sci. of Ukraine
  • S.S. Borysov Sumy State University
  • I.A. Shuda Sumy State University

DOI:

https://doi.org/10.15407/ujpe56.3.287

Keywords:

-

Abstract

We find the analytic solution of a pair of stochastic equations with arbitrary forces and multiplicative Lévy noises in a steady-state nonequilibrium case. This solution shows that Lévy flights always suppress a quasiperiodic motion related to the limit cycle. We prove that such suppression is caused by that the Lévy variation ∆L ~ (∆t)1/α with the exponent α < 2 is always negligible in comparison with the Gaussian variation ∆W ~ (∆t)1/2 in the ∆t → 0 limit.

References

H. Horsthemke and R. Lefever, Noise-Induced Transitions (Springer, Berlin, 1984).

https://doi.org/10.1007/978-3-642-70196-2_23

P. Reimann, Phys. Rep. 361, 57 (2002).

https://doi.org/10.1016/S0370-1573(01)00081-3

C. Van den Broeck, J.M.R. Parrondo, and R. Toral, Phys. Rev. Lett. 73, 3395 (1994).

https://doi.org/10.1103/PhysRevLett.73.3395

C. Van den Broeck, J.M.R. Parrondo, J. Armero, and A. Hern'andez-Machado, Phys. Rev. E 49, 2639 (1994).

https://doi.org/10.1103/PhysRevE.49.2639

A.I. Olemskoi, D.O. Kharchenko, and I.A. Knyaz', Phys. Rev. E 71, 041101 (2005).

https://doi.org/10.1103/PhysRevE.71.041101

R. Benzi, A. Sutera, and A. Vulpiani, J. Phys. A 14, L453 (1981).

https://doi.org/10.1088/0305-4470/14/11/006

L. Gammaitoni, P. H¨anggi, P. Jung, and F. Marchesoni, Rev. Mod. Phys. 70, 223 (1998).

https://doi.org/10.1103/RevModPhys.70.223

J. Buceta, M. Iba˜nes, J.M. Sancho, and Katja Lindenberg, Phys. Rev. E 67, 021113 (2003).

https://doi.org/10.1103/PhysRevE.67.021113

M.C. Cross and P.C. Hohenberg, Rev. Mod. Phys. 65, 851 (1993).

https://doi.org/10.1103/RevModPhys.65.851

F. Julicher, A. Ajdari, and J. Prost, Rev. Mod. Phys. 69, 1269 (1997).

https://doi.org/10.1103/RevModPhys.69.1269

F. Sagu'es, J.M. Sancho, and J. Garcia-Ojalvo, Rev. Mod. Phys. 79, 829 (2007).

https://doi.org/10.1103/RevModPhys.79.829

R.L. Kautz, J. Appl. Phys. 58, 424 (1985).

https://doi.org/10.1063/1.335642

F. Arecchi, R. Badii, and A. Politi, Phys. Rev. A 32, 402 (1985).

https://doi.org/10.1103/PhysRevA.32.402

J.B. Gao, T. Wen-wen, and R. Nageswara, Phys. Rev. Lett. 89, 254101 (2002).

O. Osenda, C.B. Briozzo, and M.O. Caceres, Phys. Rev. E 55, R3824 (1997).

https://doi.org/10.1103/PhysRevE.55.R3824

D. Alonso, A.J. McKane, and M. Pascual, J. R. Soc. Interface 4, 575 (2007).

https://doi.org/10.1098/rsif.2006.0192

M. Simoes, M.M. Telo da Gama, and A. Nunes, J. R. Soc. Interface 5, 555 (2008).

https://doi.org/10.1098/rsif.2007.1206

R. Kuske, L.F. Gordillo, and P. Greenwood, J. Theor. Biol. 245, 459 (2007).

https://doi.org/10.1016/j.jtbi.2006.10.029

A.J. McKane and T.J. Newman, Phys. Rev. Lett. 94, 218102 (2005).

https://doi.org/10.1103/PhysRevLett.94.218102

M. Pineda-Krch, H.J. Blok, U. Dieckmann, and M. Doebeli, Oikos 116, 53 (2007).

https://doi.org/10.1111/j.2006.0030-1299.14940.x

M.S. de la Lama, I.G. Szendro, J.R. Iglesias, and H.S. Wio, Eur. Phys. J. B 51, 435 (2006).

https://doi.org/10.1140/epjb/e2006-00232-8

D. Gonze, J. Halloy, and P. Gaspard, J. Chem. Phys. 116, 10997 (2002).

https://doi.org/10.1063/1.1475765

A.J. McKane, J.D. Nagy, T.J. Newman, and M.O. Stefanini, J. Stat. Phys. 128, 165 (2007).

https://doi.org/10.1007/s10955-006-9221-9

M. Scott, B. Ingalls, and M. Kaern, Chaos 16, 026107 (2006).

https://doi.org/10.1063/1.2211787

E. Ben-Naim and P.L. Krapivsky, Phys. Rev. E 69, 046113 (2004).

https://doi.org/10.1103/PhysRevE.69.046113

B.D. Hassard, N.D. Kazarinoff and Y.-H. Wan, Theory and Applications of Hopf Bifurcation (Cambridge Univ. Press, Cambridge, 1981).

R. Grimshaw, Nonlinear Ordinary Differential Equations (Blackwell, Oxford, 1990).

M.S. Bartlett, J. R. Stat. Soc. A 120, 48 (1957).

https://doi.org/10.2307/2342553

A.J. McKane and T.J. Newman, Phys. Rev. Lett. 94, 218102 (2005).

https://doi.org/10.1103/PhysRevLett.94.218102

A. Pikovsky and J. Kurths, Phys. Rev. Lett. 78, 775 (1997).

https://doi.org/10.1103/PhysRevLett.78.775

B. Lindner and L. Schimansky-Geier, Phys. Rev. E 61, 6103 (2000).

https://doi.org/10.1103/PhysRevE.61.6103

A. Neiman, P.I. Saparin, and L. Stone, Phys. Rev. E 56, 270 (1997).

https://doi.org/10.1103/PhysRevE.56.270

H. Gang, T. Ditzinger, C.Z. Ning, and H. Haken, Phys. Rev. Lett. 71, 807 (1993).

https://doi.org/10.1103/PhysRevLett.71.807

A.A. Dubkov, B. Spagnolo, and V.V. Uchaikin, Int. J. of Bifurc. and Chaos 18, 2649 (2008).

https://doi.org/10.1142/S0218127408021877

A. Ichiki and M. Shiino, Eur. Phys. Lett. 87, 30004 (2009).

https://doi.org/10.1209/0295-5075/87/30004

D. Schertzer, M. Larchev^eque, J. Duan, V.V. Yanovsky, and S. Lovejoy, J. Math. Phys: Math. Gen. 41, 200 (2001).

https://doi.org/10.1063/1.1318734

A. Chechkin, V. Gonchar, J. Klafter, R. Metzler, and L. Tanatarov, Chem. Phys. 284, 233 (2002).

https://doi.org/10.1016/S0301-0104(02)00551-7

S.I. Denisov, W. Horsthemke, and P. H¨anggi, Eur. Phys. J. B 68, 567 (2009).

https://doi.org/10.1140/epjb/e2009-00126-3

H. Risken, The Fokker-Planck Equation (Springer, Berlin, 1984).

https://doi.org/10.1007/978-3-642-96807-5

I.A. Shuda, S.S. Borysov, and A.I. Olemskoi, Phys. Scr. 79, 065001 (2009).

https://doi.org/10.1088/0031-8949/79/06/065001

P. L'evy, Theorie de l'addition des variables Al'eatoires (Gauthier-Villars, Paris, 1937).

P.E. Protter, Stochastic Integration and Differential Equations (Springer, Berlin-Heidelberg, 2004).

https://doi.org/10.1007/978-3-662-10061-5

Downloads

Published

2022-02-15

How to Cite

Olemskoi, A., Borysov, S., & Shuda, I. (2022). Suppression of Oscillations by Lévy Noise. Ukrainian Journal of Physics, 56(3), 287. https://doi.org/10.15407/ujpe56.3.287

Issue

Section

General problems of theoretical physics