Determination of the Surface Tension Coefficient of Polymer Gel
DOI:
https://doi.org/10.15407/ujpe67.5.365Keywords:
hydroxypropyl cellulose, phase transition, ions, surface tensionAbstract
A method for determining the surface tension coefficient at the sol-gel phase interface in the polymer solution is proposed. The required value is calculated on the basis of the temperature dependence of the gel phase volume fraction formed during the sol-gel transition. The method has been tested using the hydroxypropyl cellulose aqueous solution. In particular, the gel phase volume fraction is determined by measuring the temperature dependence of the solution turbidity. Using the proposed method, it is found that the surface tension coefficient of the examined solution decreases, if ions of group-I alkali metals (Li, Na, and K chlorides) are introduced, which agrees with the classical theory of electrocapillary phenomena in solutions.
References
P.-G. Gennes. Scaling Concepts in Polymer Physics (Cornell University Press, 1979) [ISBN: 978-0801412035].
H.-G. Elias. Mega Molecules (Springer, 1987) [ISBN: 978-3540175414].
https://doi.org/10.1007/978-3-642-71900-4
R.A.L. Jones. Soft Condensed Matter (Oxford University Press, 2002) [ISBN: 978-0198505891].
K. Kamide. Cellulose and Cellulose Derivatives (Elsevier Science, 2005) [ISBN: 978-0080454443].
P.T. Anastas, J.C. Warner. Green Chemistry: Theory and Practice (Oxford University Press, 1998) [ISBN: 978-0198506980].
B.E. Paton, L.A. Bulavin, O.Yu. Aktan, Yu.F. Zabashta, O.V. Lebedev, S.E. Podpryatov, A.G. Dubko, O.M. Ivanova. Structural transformations of collagen at the electrowelding of soft biological tissues. Dopov. Nats. Akad. Nauk Ukr. 2, 94 (2010) (in Ukrainian).
B. Furie, B.C. Furie. Molecular and cellular biology of blood coagulation. N. Engl. J. Med. 326, 800 (1992).
https://doi.org/10.1056/NEJM199203193261205
E. Cal'o, V.V. Khutoryanskiy. Biomedical applications of hydrogels: A review of patents and commercial products. Eur. Polym. J. 65, 252 (2014).
https://doi.org/10.1016/j.eurpolymj.2014.11.024
A.W. Lloyd, R.G. Faragher, S.P. Denyer. Ocular biomaterials and implants. Biomaterials 22, 769 (2001).
https://doi.org/10.1016/S0142-9612(00)00237-4
B.H. Koffler, M. McDonald, D.S. Nelinson. Improved signs, symptoms, and quality of life associated with dry eye syndrome: Hydroxypropyl cellulose ophthalmic insert patient registry. Eye Contact Lens 36, 170 (2010).
https://doi.org/10.1097/ICL.0b013e3181db352f
K.G. Harding, H.L. Morris, G.K. Patel. Science, medicine and the future: healing chronic wounds. BMJ 324, 160 (2002).
https://doi.org/10.1136/bmj.324.7330.160
V. Jones, J.E. Grey, K.G. Harding. Wound dressings. BMJ 332, 777 (2006).
https://doi.org/10.1136/bmj.332.7544.777
J.L. Drury, D.J. Mooney. Hydrogels for tissue engineering: Scaffold design variables and applications. Biomaterials 24, 4337 (2003).
https://doi.org/10.1016/S0142-9612(03)00340-5
J.A. Hunt, R. Chen, T. van Veena, N. Bryana. Hydrogels for tissue engineering and regenerative medicine. J. Mater. Chem. B 2, 5319 (2014).
https://doi.org/10.1039/C4TB00775A
Fundamentals and Applications of Controlled Release Drug Delivery. Edited by J. Siepmann, R. Siegel, M. Rathbone (Springer, 2012) [ISBN: 978-1461408802].
M.L. Weiner, L.A. Kotkoskie. Excipient Toxicity and Safety (CRC Press, 2019) [ISBN: 978-0824782108].
Yu.F. Zabashta, V.I. Kovalchuk, L.A. Bulavin. Kinetics of the first-order phase transition in a varying temperature field. Ukr. J. Phys. 66, 978 (2021).
https://doi.org/10.15407/ujpe66.11.978
B.B. Mandelbrot. The Fractal Geometry of Nature (Times Books, 1982) [ISBN: 978-0716711865].
Hydroxypropyl Cellulose [https://www.alfa.com/en/catalog/043400/].
O.M. Alekseev, Yu.F. Zabashta, V.I. Kovalchuk, M.M. Lazarenko, L.A. Bulavin. The structure of polymer clusters in aqueous solutions of hydroxypropylcellulose. Ukr. J. Phys. 64, 238 (2019).
https://doi.org/10.15407/ujpe64.3.238
O.M. Alekseev, Yu.F. Zabashta, V.I. Kovalchuk, M.M. Lazarenko, E.G. Rudnikov, L.A. Bulavin. Structural transition in dilute solutions of rod-like macromolecules. Ukr. J. Phys. 65, 50 (2020).
https://doi.org/10.15407/ujpe65.1.50
V.I. Kovalchuk. Phase separation dynamics in aqueous solutions of thermoresponsive polymers. Cond. Matt. Phys. 24, 43601 (2021).
https://doi.org/10.5488/CMP.24.43601
J. Frenkel. Kinetic Theory of Liquids (Dover Publications, 1955).
J.O'M. Bockris, A.K.N. Reddy. Modern Electrochemistry (Springer Science, 2001) [ISBN: 978-0306463242].
Downloads
Published
How to Cite
Issue
Section
License
Copyright Agreement
License to Publish the Paper
Kyiv, Ukraine
The corresponding author and the co-authors (hereon referred to as the Author(s)) of the paper being submitted to the Ukrainian Journal of Physics (hereon referred to as the Paper) from one side and the Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, represented by its Director (hereon referred to as the Publisher) from the other side have come to the following Agreement:
1. Subject of the Agreement.
The Author(s) grant(s) the Publisher the free non-exclusive right to use the Paper (of scientific, technical, or any other content) according to the terms and conditions defined by this Agreement.
2. The ways of using the Paper.
2.1. The Author(s) grant(s) the Publisher the right to use the Paper as follows.
2.1.1. To publish the Paper in the Ukrainian Journal of Physics (hereon referred to as the Journal) in original language and translated into English (the copy of the Paper approved by the Author(s) and the Publisher and accepted for publication is a constitutive part of this License Agreement).
2.1.2. To edit, adapt, and correct the Paper by approval of the Author(s).
2.1.3. To translate the Paper in the case when the Paper is written in a language different from that adopted in the Journal.
2.2. If the Author(s) has(ve) an intent to use the Paper in any other way, e.g., to publish the translated version of the Paper (except for the case defined by Section 2.1.3 of this Agreement), to post the full Paper or any its part on the web, to publish the Paper in any other editions, to include the Paper or any its part in other collections, anthologies, encyclopaedias, etc., the Author(s) should get a written permission from the Publisher.
3. License territory.
The Author(s) grant(s) the Publisher the right to use the Paper as regulated by sections 2.1.1–2.1.3 of this Agreement on the territory of Ukraine and to distribute the Paper as indispensable part of the Journal on the territory of Ukraine and other countries by means of subscription, sales, and free transfer to a third party.
4. Duration.
4.1. This Agreement is valid starting from the date of signature and acts for the entire period of the existence of the Journal.
5. Loyalty.
5.1. The Author(s) warrant(s) the Publisher that:
– he/she is the true author (co-author) of the Paper;
– copyright on the Paper was not transferred to any other party;
– the Paper has never been published before and will not be published in any other media before it is published by the Publisher (see also section 2.2);
– the Author(s) do(es) not violate any intellectual property right of other parties. If the Paper includes some materials of other parties, except for citations whose length is regulated by the scientific, informational, or critical character of the Paper, the use of such materials is in compliance with the regulations of the international law and the law of Ukraine.
6. Requisites and signatures of the Parties.
Publisher: Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine.
Address: Ukraine, Kyiv, Metrolohichna Str. 14-b.
Author: Electronic signature on behalf and with endorsement of all co-authors.