Kinetics of Charge Transfer Processes in Molecular Junctions

Authors

  • E.G. Petrov Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe56.7.721

Keywords:

-

Abstract

A kinetic master equation for state populations of a quantum system comprised of separate quantum subsystems, is derived. The equation allows one to describe the charge transfer processes in molecular junctions, where the molecule operates as a transmitter of electrons between the electrodes. Special attention is given to the derivation of contact and distant rate constants responsible for the formation of sequential (hopping) and direct (distant) components of the current, as well as for the time evolution of molecular state probabilities.

References

Molecular Electronics, edited by M. Ratner and J. Jortner (Blackwell Science, Oxford, 1997).

R.M. Metzger, Acc. Chem. Res. 32, 950 (1999).

https://doi.org/10.1021/ar9900663

A. Nitzan, Annu. Rev. Phys. Chem. 52, 681 (2001).

https://doi.org/10.1146/annurev.physchem.52.1.681

P. Hänggi, M. Ratner, and S. Yaliraki, Chem. Phys. 281, 111 (2002).

https://doi.org/10.1016/S0301-0104(02)00403-2

A. Nitzan and M. Ratner, Science 300, 1384 (2003).

https://doi.org/10.1126/science.1081572

S. Datta, Nanotechnology 15, S483 (2004).

https://doi.org/10.1088/0957-4484/15/7/057

Introducing Molecular Electronics, edited by G. Cuniberti, G.F. Fagas, and K. Richter, Lecture Notes in Physics 680 (Springer, Heidelberg, 2005).

M. Galperin, M.A. Ratner, and A. Nitzan, J. Phys. Condens. Matter 19, 103201 (2007).

https://doi.org/10.1088/0953-8984/19/10/103201

P. Damle, A.W. Ghosh, and S. Datta, Chem. Phys. 281, 171 (2002).

https://doi.org/10.1016/S0301-0104(02)00496-2

G. Vignale and M. Di Ventra, Phys. Rev. B 79, 014201 (2009).

https://doi.org/10.1103/PhysRevB.79.014201

S. Nakajima, Progr. Theor. Phys. 20, 948 (1958).

https://doi.org/10.1143/PTP.20.948

R. Zwanzig, Physica 30, 1109 (1964).

https://doi.org/10.1016/0031-8914(64)90102-8

P.N. Argyres and P.L. Kelley, Phys. Rev. 134, A97 (1964).

https://doi.org/10.1103/PhysRev.134.A98

D.N. Zubarev, Nonequilibrium Statistical Thermodynamics (Consultants Bureau, New York, 1974).

https://doi.org/10.21236/AD0784411

A.I. Akhiezer and S.V. Peletminsky, Methods of Statistical Physics (Pergamon Press, New York, 1981).

V.P. Seminozhenko, Phys. Reports 91, 104 (1982).

https://doi.org/10.1016/0370-1573(82)90049-7

E.G. Petrov, Physics of Charge Transfer in Biosystems (Kiev, Naukova Dumka, 1984) (in Russian).

K. Blum, Density Matrix Theory and Applications (Plenum Press, New York, 1996).

https://doi.org/10.1007/978-1-4757-4931-1

V. May and O. Kühn, Charge and Energy Transfer Dynamics in Molecular Systems (Wiley-VCH, Weinheim, 2004).

https://doi.org/10.1002/9783527602575

E.G. Petrov and P. Hänggi, Phys. Rev. Lett. 86, 2862 (2001).

https://doi.org/10.1103/PhysRevLett.86.2862

J. Lehmann, G.L. Ingold, and P. Hänggi, Chem. Phys. 281, 199 (2002).

https://doi.org/10.1016/S0301-0104(02)00344-0

E.G. Petrov, V. May, and P. Hänggi, Chem. Phys. 319, 380 (2005).

https://doi.org/10.1016/j.chemphys.2005.03.027

E.G. Petrov, Low Temp. Phys. 31, No. 3-4, 338 (2005).

https://doi.org/10.1063/1.1884438

E.G. Petrov, Chem. Phys. 326, 151 (2006).

https://doi.org/10.1016/j.chemphys.2006.04.016

E.G. Petrov, V. May, and P. Hänggi, Phys. Rev. B 73, 045498 (2006).

https://doi.org/10.1103/PhysRevB.73.045408

F.J. Kaiser, M. Strass, S. Kohler, and P. Hänggi, Chem. Phys. 322, 193 (2006).

https://doi.org/10.1016/j.chemphys.2005.08.005

E.G. Petrov, in Electron Correlation in New Materials and Nanosystems, edited by K. Scharnberg and S. Kruchinin, NATO Science Series II. Mathematics, Physics, and Chemistry, 241, (Kluwer, Dordrecht, 2007), p. 37.

R. Jorn and T. Seideman, J. Chem. Phys. 129, 194703 (2008).

https://doi.org/10.1063/1.2977954

E.G. Petrov and M.V. Koval, Phys. Lett. A 20, 948 (2008).

E.G. Petrov, Ukr. J. Phys. 55, 12 (2010)

https://doi.org/10.1134/S1028335810040129

E.G. Petrov and V.I. Teslenko, Chem. Phys. 375, 243 (2010).

https://doi.org/10.1016/j.chemphys.2010.05.029

V.E. Shapiro and M.N. Loginov, Physica A 91, 563 (1978).

https://doi.org/10.1016/0378-4371(78)90198-X

E.G. Petrov and V.I. Teslenko, Theor. Math. Phys. 84, 986 (1990).

https://doi.org/10.1007/BF01017358

I.A. Goychuk, E.G. Petrov and V. May, Phys. Rev. E 56, 1421 (1997).

https://doi.org/10.1103/PhysRevE.56.1421

E.G. Petrov, Phys. Rev. E 57, 94 (1998).

https://doi.org/10.1103/PhysRevE.57.94

I. Goychuk and P. Hänggi, Adv. Phys. 54, 525 (2005).

https://doi.org/10.1080/00018730500429701

A more exact form for the transfer rate (14) characterizing the quasiisoenergetic transitions in an open QS, has been derived in [31]. The rate contains a specific Lorentzian. Note, however, that the area covered by this Lorentzian is mainly concentrated near E(a) ≈ E(b). Therefore, it becomes possible to simplify the form of the transfer rate K(a; b) using the delta-function instead of the Lorentzian (see also [30]). The advantage of such a substitution is in that the transfer rate can be calculated without specification of the stochastic field alternating the level positions.

After finishing the averaged procedure, the characteristics of a

stochastic field are concentrated in the specific Lorentzian [37].

A.S. Davydov, Quantum Mechanics (Pergamon Press, Oxford, 1976).

Quantity (38) is the proper energy with the modified molecular Hamiltonian H(eff). Its form follows from the diagonalization of the entire Hamiltonian (18) under the condition that the molecule-electrode couplings do not modify the band levels of the macroscopic electrodes (see [3, 8, 9, 23, 24]).

Downloads

Published

2022-02-09

How to Cite

Petrov, E. (2022). Kinetics of Charge Transfer Processes in Molecular Junctions. Ukrainian Journal of Physics, 56(7), 721. https://doi.org/10.15407/ujpe56.7.721

Issue

Section

General problems of theoretical physics

Most read articles by the same author(s)