Dirac Electrons in a Planar Potential Well in a Magnetic Field

Authors

  • O.V. Gamayun Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine
  • E.V. Gorbar Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine
  • V.P. Gusynin Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe56.7.688

Keywords:

-

Abstract

We study the Dirac equation in two spatial dimensions for quasiparticles in a potential well in graphene in a homogeneous magnetic field. It is shown that, at some critical value of the potential strength, the lowest empty energy level crosses a filled negative energy level leading to the instability of the system. The critical potential strength decreases with decrease of a quasiparticle gap and becomes zero in the gapless case. It is argued that the magnetically driven instability of a charged center can be considered as a quantum mechanical counterpart of the magnetic catalysis phenomenon in graphene.

References

Ya.B. Zel'dovich and V.S. Popov, Sov. Phys. Usp. 14, 673 (1972).

https://doi.org/10.1070/PU1972v014n06ABEH004735

W. Greiner, B. Muller, and J. Rafelski, Quantum Electrodynamics of Strong Fields (Springer, Berlin, 1985).

https://doi.org/10.1007/978-3-642-82272-8

I. Pomeranchuk, J. Smorodinsky, J. Phys. (Moscow) 9, 97 (1945).

D.S. Novikov, Phys. Rev. B 76, 245435 (2007)

https://doi.org/10.1103/PhysRevB.76.245435

V.M. Pereira, J. Nilsson, and A.H. Castro Neto, Phys. Rev. Lett. 99, 166802 (2007).

https://doi.org/10.1103/PhysRevLett.99.166802

A.V. Shytov, M.I. Katsnelson, and L.S. Levitov, Phys. Rev. Lett. 99, 236801 (2007); ibid., 99, 246802 (2007).

https://doi.org/10.1103/PhysRevLett.99.246802

O.V. Gamayun, E.V. Gorbar, and V.P. Gusynin, Phys. Rev. B 80, 165429 (2009).

https://doi.org/10.1103/PhysRevB.80.165429

J. Wang, H.A. Fertig, and G. Murthy, Phys. Rev. Lett. 104, 186401 (2010).

https://doi.org/10.1103/PhysRevLett.104.186401

J.E. Drut and T.A. Lahde, Phys. Rev. Lett. 102, 026802 (2009); Phys. Rev. B 79, 165425 (2009); 79, 241405(R) (2009).

R. Dillenschneider and J.H. Han, Phys. Rev. B 78, 045401 (2008)

https://doi.org/10.1103/PhysRevB.78.045401

R. Dillenschneider, ibid. 78, 115417 (2008).

https://doi.org/10.1103/PhysRevB.78.115417

V.N. Oraevskii, A.I. Rex, and V.B. Semikoz, Sov. Phys. JETP 45, 428 (1977)

P. Schlutter et al., J. Phys. 18, 1685 (1985).

https://doi.org/10.1088/0022-3700/18/9/005

V.P. Gusynin, V.A. Miransky, and I.A. Shovkovy, Phys. Rev. Lett. 73, 3499 (1994); Nucl. Phys. B 462, 249 (1996).

https://doi.org/10.1016/0550-3213(96)00021-1

D.V. Khveshchenko, Phys. Rev. Lett. 87, 206401 (2001).

https://doi.org/10.1103/PhysRevLett.87.246802

E.V. Gorbar, V.P. Gusynin, V.A. Miransky, and I.A. Shovkovy, Phys. Rev. B 66, 045108 (2002).

https://doi.org/10.1103/PhysRevB.66.045108

V.P. Gusynin, V.A. Miransky, S.G. Sharapov, and I.A. Shovkovy, Phys. Rev. B 74, 195429 (2006).

https://doi.org/10.1103/PhysRevB.74.195429

H. Bateman and A. Erdelyi, Higher Transcendental Functions (McGraw-Hill, New York, 1953), Vol. 1.

P.K. Pyatkovskiy and V.P. Gusynin, Phys. Rev. B 83, 075422 (2011).

https://doi.org/10.1103/PhysRevB.83.075422

T.M. Rusin and W. Zawadzski, J. Phys. A 44, 195201 (2011).

https://doi.org/10.1088/1751-8113/44/19/195201

S.G. Sharapov, V.P. Gusynin, and H. Beck, Phys. Rev. B 69, 075104 (2004).

https://doi.org/10.1103/PhysRevB.69.075104

Downloads

Published

2022-02-09

How to Cite

Gamayun, O., Gorbar, E., & Gusynin, V. (2022). Dirac Electrons in a Planar Potential Well in a Magnetic Field. Ukrainian Journal of Physics, 56(7), 688. https://doi.org/10.15407/ujpe56.7.688

Issue

Section

General problems of theoretical physics

Most read articles by the same author(s)