Critical Phenomena and Phase Transitions in Large Lattices within Monte-Carlo Based Non-perturbative Approaches

Authors

  • J. Kaupužs Institute of Mathematics and Computer Science, University of Latvia
  • J. Rimšāns Institute of Mathematics and Computer Science, University of Latvia
  • R.V.N. Melnik M2NeT Laboratory, Wilfrid Laurier University

DOI:

https://doi.org/10.15407/ujpe56.8.845

Keywords:

-

Abstract

Critical phenomena and Goldstone mode effects in spin models with the O(n) rotational symmetry are considered. Starting with Goldstone mode singularities in the XY and O(4) models, we briefly review various theoretical concepts, as well as state-of-the-art Monte Carlo simulation results. They support recent results of the GFD (grouping of Feynman diagrams) theory, stating that these singularities are described by certain nontrivial exponents, which differ from those predicted earlier by perturbative treatments. Furthermore, we present the recent Monte Carlo simulation results of the three-dimensional Ising model for lattices with linear sizes up to L = 1536, which are very large as compared to L ≤ 128 usually used in the finite-size scaling analysis. These results are obtained, using a parallel OpenMP implementation of the Wolff single-cluster algorithm. The finite-size scaling analysis of the critical exponent η, assuming the usually accepted correction-to-scaling exponent ω ≈ 0.8, shows that η is likely to be somewhat larger than the value 0.0335 ± 0.0025 of the perturbative renormalization group (RG) theory. Moreover, we have found that the actual data can be well described by different critical exponents: η = ω =1/8 and ν = 2/3, found within the GFD theory.

References

L. Onsager, Phys. Rev. 65, 117 (1944).

https://doi.org/10.1103/PhysRev.65.117

B. McCoy and T.T. Wu, The Two-Dimensional Ising Model (Harvard University Press, 1973).

https://doi.org/10.4159/harvard.9780674180758

R.J. Baxter, Exactly Solved Models in Statistical Mechanics (Academic Press, London, 1989).

P.D. Francesco, P. Mathieu, and D. Sénéchal, Conformal Field Theory (Springer, New York, 1997).

https://doi.org/10.1007/978-1-4612-2256-9

M.J. Huang and T.Y. Kang, Int. J. of Thermal Sci. 50 (7), 1156 (2011).

https://doi.org/10.1016/j.ijthermalsci.2011.02.011

R.V.N. Melnik, X.L. Wei, and G. Moreno-Hagelsieb, J. of Biol. Systems 17 (3), 425 (2009).

https://doi.org/10.1142/S0218339009002879

T. Fiedler, I.V. Belova, and G.E. Murch, Computational Materials Science 47 (3), 826 (2010).

https://doi.org/10.1016/j.commatsci.2009.11.010

D. Zhang and R.V.N. Melnik, Applied Stochastic Models in Business and Industry 25 (5), 565 (2009).

https://doi.org/10.1002/asmb.745

J.K. Deng, X.D. Ding, T. Lookman, T. Suzuki, K. Otsuka, J. Sun, A. Saxena, and X.B. Ren, Phys. Rev. 81 (22), 220101 (2010).

https://doi.org/10.1103/PhysRevB.81.220101

M.E.J. Newman and G.T. Barkema, Monte Carlo Methods in Statistical Physics (Clarendon Press, Oxford, 1999).

T. Preis, P. Virnau, W. Paul, and J.J. Schneider, J. of Comput. Phys. 228 (12), 4468 (2009).

https://doi.org/10.1016/j.jcp.2009.03.018

E. Martinez, P.R. Monasterio, and J. Marian, J. of Comput. Phys. 230 (4), 1359 (2011)

https://doi.org/10.1016/j.jcp.2010.11.006

J.A. Redinz and A.C.N. de Magelhaes, Phys. Rev. B 51, 2930 (1995).

https://doi.org/10.1103/PhysRevB.51.2930

T. Hara and H. Tasaki, J. Stat. Phys. 47, 92 (1987).

https://doi.org/10.1143/PTPS.92.1

C. Bagnuls and C. Bervillier, Phys. Rep. 348, 91 (2001).

https://doi.org/10.1016/S0370-1573(00)00137-X

J. Berges, N. Tetradis, and C. Wetterich, Phys. Rep. 363, 223 (2002).

https://doi.org/10.1016/S0370-1573(01)00098-9

J. Kaupuv{zs, Int. J. Mod. Phys. B 23, 5935 (2009).

https://doi.org/10.1142/S0217979209054697

I.D. Lawrie, J. Phys. A: Math. Gen. 18, 1141 (1985).

https://doi.org/10.1088/0305-4470/18/7/021

U.C. Tuber and F. Schwabl, Phys. Rev. B 46, 3337 (1992).

https://doi.org/10.1103/PhysRevB.46.3337

L. Schäfer, H. Horner, Z. Phys. B 29, 251 (1978).

https://doi.org/10.1007/BF01321190

R. Anishetty, R. Basu, N.D. Hari Dass, and H.S. Sharatchandra, Int. J. Mod. Phys. A 14, 3467 (1999).

https://doi.org/10.1142/S0217751X99001615

P. Hasenfratz and H. Leutwyler, Nucl. Phys. B 343, 241 (1990).

https://doi.org/10.1016/0550-3213(90)90603-B

J. Kaupužs, Progress of Theoretical Physics 124, 613 (2010).

https://doi.org/10.1143/PTP.124.613

J. Kaupužs, Ann. Phys. (Leipzig) 10, 299 (2001).

https://doi.org/10.1002/1521-3889(200104)10:4<299::AID-ANDP299>3.0.CO;2-J

J. Kaupužs, R.V.N. Melnik, and J. Rimšāns, Eur. Phys. J. B 55, 363 (2007).

https://doi.org/10.1140/epjb/e2007-00064-0

J. Kaupužs, R.V.N. Melnik, and J. Rimšāns, Communications in Computational Physics 4, 124 (2008).

J. Kaupužs, R.V.N. Melnik, and J. Rimšāns, Phys. Lett. A 374, 1943 (2010).

https://doi.org/10.1016/j.physleta.2010.03.002

D.J. Amit, Field Theory, the Renormalization Group, and Critical Phenomena (World Scientific, Singapore, 1984).

Shang-Keng Ma, Modern Theory of Critical Phenomena (Benjamin, New York, 1976).

J. Zinn-Justin, Quantum Field Theory and Critical Phenomena (Clarendon Press, Oxford, 1996).

H. Kleinert and V. Schulte-Frohlinde, Critical Properties of ϕ4 Theories (World Scientific, Singapore, 2001).

https://doi.org/10.1142/4733

A. Pelissetto and E. Vicari, Phys. Rep. 368, 549 (2002).

https://doi.org/10.1016/S0370-1573(02)00219-3

R. Guid and J. Zinn-Justin, J. Phys. A 31, 8103 (1998).

https://doi.org/10.1088/0305-4470/31/40/006

M. Hasenbusch, Int. J. Mod. Phys. C 12, 911 (2001).

https://doi.org/10.1142/S0129183101002383

A.L. Tseskis, J. Exp. Theor. Phys. 75, 269 (1992).

https://doi.org/10.1016/0248-4900(92)90186-5

Z-D. Zhang, Philosophical Magazine 87, 5309 (2007).

https://doi.org/10.1080/14786430701646325

V.N. Bondarev, Phys. Rev. E, 77, 050103(R) (2008).

https://doi.org/10.1103/PhysRevE.77.050103

V.N. Bondarev, Eur. Phys. J. B, 77, 153 (2010).

https://doi.org/10.1140/epjb/e2010-00260-9

J. Kaupužs, Int. J. Mod. Phys. C 16, 1121 (2005).

https://doi.org/10.1142/S0129183105007789

J. Kaupužs, Int. J. Mod. Phys. C 17, 1095 (2006).

https://doi.org/10.1142/S0129183106009795

J. Kaupužs, e-print cond-mat/0610015 (2010).

J. Kaupužs, J. Rimšāns, and R.V.N. Melnik, Phys. Rev. E 81, 026701 (2010).

https://doi.org/10.1103/PhysRevE.81.026701

L.N. Shur and P. Butera, Int. J. Mod. Phys. C 9, 607 (1998).

S. Mertens and H. Bauke, Phys. Rev. E 69, 055702(R) (2004).

https://doi.org/10.1103/PhysRevE.69.055702

Y. Deng and H.W.J. Blöte, Phys. Rev. E 68, 036125 (2003).

https://doi.org/10.1103/PhysRevE.68.036125

J.A. Plascak, A.M. Ferrenberg, and D.P. Landau, Phys. Rev. E 65, 066702 (2002).

https://doi.org/10.1103/PhysRevE.65.066702

Downloads

Published

2022-02-09

How to Cite

Kaupužs, J., Rimšāns, J., & Melnik, R. (2022). Critical Phenomena and Phase Transitions in Large Lattices within Monte-Carlo Based Non-perturbative Approaches. Ukrainian Journal of Physics, 56(8), 845. https://doi.org/10.15407/ujpe56.8.845

Issue

Section

General problems of theoretical physics