Can Nuclear Matter Consist of α-Particles?

Authors

  • B.E. Grinyuk Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe67.1.17

Keywords:

Bose-system of α-particles, spatial collapse, nuclear matter

Abstract

A sufficient condition for the spatial collapse in an infinite system of interacting Bose particles is obtained on the basis of the variational principle with the use of trial functions with the Jastrow pair correlation factors. The instability of a hypothetical infinite system of α-particles with respect to the spatial collapse is shown under the assumption of the Ali–Bodmer interaction potentials between such Bose particles. Thus, it becomes clear why the hypothetical nuclear matter is naturally treated with the use of at least the nucleon degrees of freedom.

References

B.E. Grinyuk, D.V. Piatnytskyi, I.V. Simenog. Structure characteristics of a 4He nucleus within the microscopic approach. Ukr. J. Phys. 52 (5), 424 (2007).

David Jenkins. Alpha clustering in nuclei: Another form of shape coexistence? J. Phys. G: Nucl. and Part. Phys. 43 (2), 024003 (2016).

https://doi.org/10.1088/0954-3899/43/2/024003

B.E. Grinyuk, I.V. Simenog. Structure characteristics of light cluster nuclei with two extra nucleons. Ukr. J. Phys. 56 (7), 635 (2011).

https://doi.org/10.15407/ujpe56.7.635

B.E. Grinyuk, I.V. Simenog. Structural properties of the 10Be and 10C four-cluster nuclei. Phys. Atomic Nuclei 77 (4), 415 (2014).

https://doi.org/10.1134/S1063778814030090

B.E. Grinyuk, D.V. Piatnytskyi. Structure of 14C and 14O nuclei calculated in the variational approach. Ukr. J. Phys. 61 (8), 674 (2016).

https://doi.org/10.15407/ujpe61.08.0674

B.E. Grinyuk, D.V. Piatnytskyi. Structure of 14N nucleus within a five-cluster model. Ukr. J. Phys. 62 (10), 835 (2017).

https://doi.org/10.15407/ujpe62.10.0835

K.A. Gridnev, S.Yu. Torilov, D.K. Gridnev, V.G. Kartavenko, W.Greiner. Model of binding alpha-particles and applications to superheavy elements. Int. J. Mod. Phys. E 14 (4), 635 (2005).

https://doi.org/10.1142/S0218301305003387

B.E. Grinyuk, K.A. Bugaev. About conditions of spatial collapse in an infinite system of bose particles. Ukr. J. Phys. 66 (12), 1024 (2021).

https://doi.org/10.15407/ujpe66.12.1024

S. Ali, A.R. Bodmer. Phenomenological α-α potentials. Nuc. Phys. 80, 99 (1966).

https://doi.org/10.1016/0029-5582(66)90829-7

E.P. Gross. Structure of a quantized vortex in Boson systems. Nuovo Cimento 20, 454 (1961).

https://doi.org/10.1007/BF02731494

L.P. Pitaevskii. Vortex lines in the imperfect Bose-gas. Zh. Eksp. Teor. Fiz. 40, 646 (1961).

E.P. Gross. Hydrodynamics of a superfluid condensate. Math. Phys. 4, 195 (1963).

https://doi.org/10.1063/1.1703944

A.S. Davydov. Quantum mechanics (Pergamon Press, 1965) [ISBN: 9781483187839].

Downloads

Published

2022-02-11

How to Cite

Grinyuk, B. (2022). Can Nuclear Matter Consist of α-Particles?. Ukrainian Journal of Physics, 67(1), 17. https://doi.org/10.15407/ujpe67.1.17

Issue

Section

Fields and elementary particles