Study of the Transport Properties of the Critical Binary Mixture Triethylamine − Water with an Ionic Impurity

Authors

  • A. Toumi Laboratoire de Physique des Liquides Critiques, Département de Physique Faculté des Sciences de Bizerte, Université de Carthage
  • N. Hafaiedh Laboratoire de Physique des Liquides Critiques, Département de Physique Faculté des Sciences de Bizerte, Université de Carthage
  • M. Bouanz Laboratoire de Physique des Liquides et d'Optique Non Linéaire Département de Physique, Université de Tunis El Manar

DOI:

https://doi.org/10.15407/ujpe56.8.816

Keywords:

-

Abstract

The binary liquid mixture of triethylamine + water (TEA–W) has a lower consolute point at a critical composition of 32.27 mass. % triethylamine. The shear viscosity (η) and the electrical conductivity (σ) in the single phase region of this system with added (K+, Cl) ions at various concentrations are measured in the vicinity and far from the critical temperature TC. For the pure system without KCl salt, the viscosity measurements yield an enhancement, as expected, for the Ising criticality with a crossover to a regular behavior. Shear viscosity data are consistent with a power-law divergence η = η0(Qζ0)zt–y predicted by the mode-coupling and dynamic renormalization group theories. In the temperature range ∆T = TCT < 2 ºC, the electrical conductivity (σ) exhibits a monotonous deviation from the Vogel–Fulcher–Tammann (VFT) behavior. This anomaly is described by a power law t1 –α, where t is the reduced temperature (TTC)/TC, and α is the critical exponent of the specific heat anomaly at constant pressure. For the electrolyte mixtures, the obtained critical exponent values are in the range of those expected by the theoretical calculations for the Ising 3D universality class. By combining the viscosity and the electrical conductivity data, the value of the computed Walden product has been determined, and the salt dissociation degrees, as well as the Debye screening length, have been estimated.

References

M. Bouanz, Phys. Rev. A 46, 4888 (1992).

https://doi.org/10.1103/PhysRevA.46.4888

M.E. Fisher, J. Stat. Phys. 75, 1 (1994).

https://doi.org/10.1007/BF02186278

G. Stell, J. Stat. Phys. 78, 197 (1995).

https://doi.org/10.1007/BF02183346

A. Toumi, M. Bouanz, and A. Gharbi, Chem. Phys. Lett. 362, 567 (2002).

https://doi.org/10.1016/S0009-2614(02)01107-7

E. Bloemen, J. Thoen, and W. Van Dael, J. Chem. Phys. 75, 1488 (1981).

https://doi.org/10.1063/1.442155

M.R. Moldover, J.W. Cahn, 207, 1073 (1980).

https://doi.org/10.1126/science.207.4435.1073

O'D. Kwon, D. Beaglehole, W.W. Webb, B. Widom, B.J.W. Cahn, M.R. Moldover, and B. Stephenson, Phys. Rev. Lett. 48, 185 (1982).

https://doi.org/10.1103/PhysRevLett.48.185

A. Toumi, N. Hafaiedh, and M. Bouanz, Fluid Phase Equilibr. 278, 68 (2009).

https://doi.org/10.1016/j.fluid.2009.01.004

N. Hafaiedh, A. Toumi, and M. Bouanz, J. Chem. Eng. Data. 54, 2195 (2009).

https://doi.org/10.1021/je800982n

F. Kohler and O.K. Rice, J. Chem. Phys. 26, 1614 (1954).

https://doi.org/10.1021/ac60094a024

J.N. Nayak, M.I. Aralaguppi, U.S. Toti, and T.M. Aminabhavi, J. Chem. Eng. Data. 48, 1483 (2003).

https://doi.org/10.1021/je030147g

A. Hammadi and C.D. Champeney, J. Chem. Eng. Data. 45, 1116(2000).

https://doi.org/10.1021/je000044n

D. Nandi and D.K. Hazra, J. Ind. Chem. Soc. 80, 21 (2003).

V.K. Sayal, S. Chauhan, and P.K. Gupta, J. Ind. Chem. Soc. 79, 860 (2002).

J.I. Bhat and C.B. Susha, Oriental. J. Chem. 19, 417 (2003).

A.C. Flewelling, R.J. DeFonseka, N. Khaleeli, J. Partee, and D.T. Jacobs, J. Chem. Phys. 104, 8048 (1996).

https://doi.org/10.1063/1.471440

R. Behrends and U. Kaatze, Phys. Rev. E 68, 011205 (2003).

https://doi.org/10.1103/PhysRevE.68.011205

A. Ikehata, C. Hashimoto, Y. Mikami, and Y. Ozaki, Chem. Phys. Lett. 393, 403 (2004).

https://doi.org/10.1016/j.cplett.2004.06.062

O.B. Ismailova, T.Kh. Akhmedov, Kh.T. Igamberdiev, Sh.I. Mamatkulov, A.A. Saidov, Sh.O. Tursunov, and P.K. Khabibullaev, J. Eng. Phys. Thermophys. 78, 1040 (2005).

https://doi.org/10.1007/s10891-006-0033-1

R. Behrends, T. Telgmann, and U. Kaatze, J. Chem. Phys. 117, 9828 (2002).

https://doi.org/10.1063/1.1517609

S.I. Smadley. The Interpretation of the Ionic Conductivity in Liquids (Plenum, New York, 1980).

https://doi.org/10.1007/978-1-4684-3818-5

CRC Handbook of Chemistry and Physics, edited by David R. Lide (CRC Press, Boca Raton, FL, 2007).

P.C. Hohenberg and B.I. Halperin, Rev. Mod. Phys. 49, 435 (1977).

https://doi.org/10.1103/RevModPhys.49.435

K. Kawasaki, Ann. Phys. NY. 61, 1 (1970).

https://doi.org/10.1016/0003-4916(70)90375-1

R. Perl and R.A. Ferrell, Phys. Rev. Lett. 29, 51 (1972).

https://doi.org/10.1103/PhysRevLett.29.51

P. Das and J.K. Bhattacharjee, Phys. Rev. E 67, 036103 (2003).

https://doi.org/10.1103/PhysRevE.67.041208

H. Hao, R.A. Ferrell, and J.K. Bhattacharjee, Phys. Rev. E 71, 021201 (2005).

F.J. Wegner, Phys. Rev. B 5, 4529 (1972).

https://doi.org/10.1103/PhysRevB.5.4529

D. Beysens, A. Bourgou, and G. Paladin, Phys. Rev. A 30, 2686 (1984).

https://doi.org/10.1103/PhysRevA.30.2686

D. Beysens, G. Paladin, and A. Bourgou, J. Phys. Lett. 44, 649 (1983).

https://doi.org/10.1051/jphyslet:019830044015064900

M.E. Fisher and J.H. Chen, J. Phys. (Paris) 46, 1645 (1985).

https://doi.org/10.1051/jphys:0198500460100164500

J.V. Sengers, in Supercritical Fluids, edited by E. Kiran and J.M.H. Levelt (Kluwer, Dordrecht, 1994).

R.F. Berg and M.R. Moldover, J. Chem. Phys. 89, 3694 (1988).

https://doi.org/10.1063/1.454890

J.C. Nieuwoudt and J.V. Sengers, J. Chem. Phys. 90, 457 (1989).

https://doi.org/10.1063/1.456495

R.F. Berg, M.R. Moldover, and G.A. Zimmerli, Phys. Rev. E 60,

(1999).

H. Vogel, Phys. Z. 22, 645 (1921).

C.A. Angell and E.J. Sare, J. Chem. Phys. 52, 1058 (1970).

https://doi.org/10.1063/1.1673099

C.A. Angell and R.D. Bressel, J. Phys. Chem. 76, 3244 (1972).

https://doi.org/10.1021/j100666a023

R.R. Nigmatullin, S.I. Osokin, and G. Smith, J. Phys.: Condensed Mat. 15, 3481 (2003).

https://doi.org/10.1088/0953-8984/15/20/309

H. Every, A.G. Bishop, M. Forsyth, and D.R. MacFarlane, Electrochim. Acta 45, 1279 (2000).

https://doi.org/10.1016/S0013-4686(99)00332-1

A. Oleinikova and M. Bonetti, Phys. Rev. Lett. 83, 2985 (1999).

https://doi.org/10.1103/PhysRevLett.83.2985

M.E. Fisher and J.S. Langer, Phys. Rev. Lett. 20, 665 (1968).

https://doi.org/10.1103/PhysRevLett.20.665

M. Campostrini, A. Pelissetto, P. Rossi, and E. Vicari, Phys. Rev. E 60, 3526 (1999).

https://doi.org/10.1103/PhysRevE.60.3526

I. Nezbeda, J. Kolafa, in Ionic Soft Matter: Modern Trends in Theory and Applications, edited by D. Henderson et al. (Elsevier, Amsterdam, 2005), p. 83.

https://doi.org/10.1007/1-4020-3659-0_4

M. Bouanz and A. Gharbi, J. Phys. Condens. Matter 6, 4429 (1994).

https://doi.org/10.1088/0953-8984/6/24/005

P.P. Debye and F. Hückel, Phys. Z. 24, 185 (1923).

J. Barthel, L. Iberl, J. Rossmaier, H.J. Gores, and B. Kaukal, J. Solution. Chem. 19, 321 (1990).

https://doi.org/10.1007/BF00648139

L.C. Kenausis, E.C. Evers, and C.A. Kraus, Proc. Natl. Acad. Sci. U.S.A. 48, 121 (1962); 49, 141 (1963)

https://doi.org/10.1073/pnas.49.2.141

N. Ogata. J. Macromol. Sci. C 42, 399 (2002).

https://doi.org/10.1081/MC-120006454

Y. Zhou, S. Yeh, and G. Stell, J. Chem. Phys. 102, 5785 (1995).

https://doi.org/10.1063/1.469310

J. Hamelin, T.K. Bose, and J. Thoen, Phys. Rev. E 53, 779 (1996).

https://doi.org/10.1103/PhysRevE.53.779

Downloads

Published

2022-02-09

How to Cite

Toumi, A., Hafaiedh, N., & Bouanz, M. (2022). Study of the Transport Properties of the Critical Binary Mixture Triethylamine − Water with an Ionic Impurity. Ukrainian Journal of Physics, 56(8), 816. https://doi.org/10.15407/ujpe56.8.816

Issue

Section

Solid matter