Exciton Condensation in Quantum Wells. Self-Organization Against Bose-Condensation

Authors

  • V.I. Sugakov Institute for Nuclear Research, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe56.10.1130

Keywords:

-

Abstract

The analysis of interpretations of the experimental data on the emission spectra of excitons in double quantum wells is carried out. Features of both the spatial distribution of the emission and its behavior depending on the temperature and the pumping intensity are explained by the appearance of the condensed phase of excitons caused by their interaction. The explanation does not involve the Bose–Einstein condensation of excitons. The spatial distribution of the exciton density in the condensed phase depends on the exciton lifetime and is a consequence of self-organization processes in the non-equilibrium system. The distribution of excitons
over trapped and free states and its influence on the emission spectra are investigated. The hydrodynamic equations for interacting excitons are obtained. The existence of soliton-like states (autosolitons) outside of the spinodal decomposition region is shown.

References

T. Fukuzava, E.E. Mendez, and J.M. Hong, Phys. Rev. Lett. 64, 30066 (1990).

https://doi.org/10.1103/PhysRevLett.64.3066

A.V. Larionov, V.B. Timofeev, J. Hvam, and K. Soerensen, JETP Lett. 71, 117 (2000).

https://doi.org/10.1134/1.568294

A.A. Dremin, A.V. Larionov, and V.B. Timofeev, Fiz. Tverd. Tela 46, 168 (2004).

https://doi.org/10.1134/1.1641946

V.B. Timofeev, Usp. Fiz. Nauk 175, 315 (2005).

https://doi.org/10.3367/UFNr.0175.200503g.0315

L.V. Butov, A.C. Gossard, and D.S. Chemla, Nature 418, 751 (2002).

https://doi.org/10.1038/nature00943

B.D. Snoke, S. Denev, Y.Liu et al., Nature 418, 754 (2002).

https://doi.org/10.1038/nature00940

L.V. Butov, Solid State Commun. 127, 89, (2003).

https://doi.org/10.1016/S0038-1098(03)00312-0

D. Snoke, Y. Liu, L. Pfeifer, and K. West, Solid State Commun. 127, 187 (2003).

https://doi.org/10.1016/S0038-1098(03)00316-8

A.V. Gorbunov and V.B. Timofeev, JETP Lett. 83, 146 (2006)

https://doi.org/10.1134/S0021364006040047

V.B. Timofeev, Usp. Fiz. Nauk 176, 651 (2006).

https://doi.org/10.3367/UFNr.0176.200606g.0651

V.V. Solov'ev, I.V. Kukushkin, V. Smet et al., JETP Lett. 83, 533(2006).

https://doi.org/10.1134/S002136400612006X

A.V. Gorbunov and V.B. Timofeev, JETP Lett. 84, 329 (2006).

https://doi.org/10.1134/S0021364006180111

V.B. Timofeev, A.V. Gorbunov, and D.A. Demin, Fiz. Nizk. Temper. 37, 229 (2011).

https://doi.org/10.1063/1.3570931

M. Remeika, J.C. Graves, A.T. Hammark et al., Phys. Rev. Lett. 102, 186803 (2009).

https://doi.org/10.1103/PhysRevLett.102.186803

L.S. Levitov, B.D. Simons, and L.V. Butov, Phys. Rev. Lett. 94, 176404 (2005).

https://doi.org/10.1103/PhysRevLett.94.176404

A.V. Paraskevov and T.V. Khabarova, Phys. Lett. A 368 151 (2007).

https://doi.org/10.1016/j.physleta.2007.04.001

R.B. Saptsov, JETP Lett. 86, 687 (2008).

https://doi.org/10.1134/S0021364007220158

C.S. Liu, H.G. Luo, and W.C. Wu, J. Phys.: Condens. Matter 18, 9659 (2006).

https://doi.org/10.1088/0953-8984/18/42/012

V.S. Babichenko, arXiv/cond-mat: 0706.0994 (2007).

V.K. Mukhomorov, Fiz. Tverd. Tela 52, 225 (2010).

https://doi.org/10.1134/S1063783410020046

V.I. Sugakov, Ukr. Fiz. Zh. 49, 1117 (2004)

Solid State Commun. 134, 63 (2005).

V.I. Sugakov, Fiz. Tverd. Tela 48, 1868 (2006)

https://doi.org/10.1134/S1063783406100283

Phys. of the Solid State 48, 1984 (2006)

https://doi.org/10.1134/S1063783406100283

Fiz. Nizk. Temper. 32, 1449 (2006).

V.I. Sugakov, Phys. Rev. B 76, 115303 (2007).

https://doi.org/10.1103/PhysRevB.76.115303

A.A. Chernyuk and V.I. Sugakov, Phys. Rev. B 74, 085303, (2006).

https://doi.org/10.1103/PhysRevB.74.085303

V.I. Sugakov and A.A. Chernyuk, JETP Lett. 85, 570 (2007).

https://doi.org/10.1134/S0021364007110094

M.Y.I. Tan, N.D. Drummord, and I. Needs, Phys. Rev. B 71, 033303 (2005).

Ch. Schindler and R. Zimmermann, Phys. Rev. B 78, 045313 (2008).

https://doi.org/10.1103/PhysRevB.78.045313

A.D. Meyertholen and M.M. Folger, Phys. Rev. B 78, 235307 (2008).

https://doi.org/10.1103/PhysRevB.78.235307

A.A. Chernyuk and V.I. Sugakov, Solid State Comm. 149, 2185 (2009).

https://doi.org/10.1016/j.ssc.2009.09.015

Yu.E. Lozovik and O.L. Berman, JETP Lett. 64, 573 (1996).

https://doi.org/10.1134/1.567264

V.I. Sugakov, Fiz. Tverd. Tela 28, 2441 (1986)

V.I. Sugakov, Lectures in Synergetics (World Scientific, Singapore, 1998).

https://doi.org/10.1142/3813

Sen Yang, A.V. Mintsev, A.T. Hammack, and L.V. Butov, Phys. Rev. B 75, 033311 (2007)

https://doi.org/10.1103/PhysRevB.75.033311

A.V. Gorbunov and V.B. Timofeev, JETP Lett. 84, 390 (2006).

https://doi.org/10.1134/S0021364006180111

Sen Yang, A.T. Hammack, M.M. Fogler, and L.V. Butov, Phys. Rev. Lett. 97, 187402 (2006).

https://doi.org/10.1103/PhysRevLett.97.187402

V.I. Sugakov, Solid State Commun. 106, 705 (1998).

https://doi.org/10.1016/S0038-1098(98)00153-7

A. Ishikawa, T. Ogawa, and V. Sugakov, Phys. Rev. B 64, 144301 (2001).

https://doi.org/10.1103/PhysRevB.64.144301

A. Ishikawa and T. Ogawa, Phys. Rev. E 65, 026131 (2002).

https://doi.org/10.1103/PhysRevE.65.026131

B. Link and G. Bayn, Phys. Rev. Lett. 69, 2959 (1992).

https://doi.org/10.1103/PhysRevLett.69.2959

M.R. Swift, E. Orlandini, W.R. Osborn, and J.M. Yeomans, Phys. Rev. E 54, 5041 (1996).

https://doi.org/10.1103/PhysRevE.54.5041

V.I. Sugakov, Phase Trans., 75, 953 (2002).

https://doi.org/10.1080/01411590290034100

V.I. Sugakov, J. Phys.: Condens. Matter 21, 275803 (2009).

https://doi.org/10.1088/0953-8984/21/27/275803

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J.M.J. Keeling, F.M. Marchetti, M.H. Szymanska, R. Andre, J.L. Staehli, V. Savona, P.B. Littlwood, B. Deveaud, and Le Si Dang, Nature 443, 409 (2006).

https://doi.org/10.1038/nature05131

L.V. Butov, A. Imagoglu, A.V. Mintsev, K.L. Campman, and A.C. Gossard, Phys. Rev. B 59, 1625 (1999)

https://doi.org/10.1103/PhysRevB.59.1625

L.V. Butov, A.L. Ivanov, A. Imagoglu, R.B. Littlewood, A.A. Shashkin, V.T. Dolgopolov, K.L. Campman, and A.C. Gossard, Phys. Rev. Lett. 86, 5608 (2005).

https://doi.org/10.1103/PhysRevLett.86.5608

V.S. Kerner, V.V. Osipov, Soviet Physics Uspekhi 33, 679 (1990).

https://doi.org/10.1070/PU1990v033n09ABEH002627

I.M. Lifshitz and V.V. Slyozov, J. Phys. Chem. Solids 19, 35 (1961).

https://doi.org/10.1016/0022-3697(61)90054-3

R.N. Silver, Phys. Rev. B 11, 1569 (1975).

https://doi.org/10.1103/PhysRevB.11.1569

R.M. Westervelt, Phys. Status Solidi B 74, 727 (1976).

https://doi.org/10.1002/pssb.2220740235

V.S. Bagaev, N.V. Zamkovets, L.V. Keldysh, N.N. Sybel'din, and V.A. Tsvetkov, Sov. Phys. JETP 43, 783 (1976).

Published

2022-02-06

How to Cite

Sugakov, V. (2022). Exciton Condensation in Quantum Wells. Self-Organization Against Bose-Condensation. Ukrainian Journal of Physics, 56(10), 1130. https://doi.org/10.15407/ujpe56.10.1130

Issue

Section

General problems of theoretical physics