Photoluminescence Study of Porous Silicon as Photosensitizer of Singlet Oxygen Generation

Authors

  • V.Yu. Timoshenko M.V. Lomonosov Moscow State University, Faculty of Physics

DOI:

https://doi.org/10.15407/ujpe56.10.1097

Keywords:

-

Abstract

Si nanocrystals with dimensions of about several nanometers in layers and powders of porous silicon (por-Si) act as photosensitizers of the generation of singlet oxygen which is a highly chemical reactive form of molecular oxygen. The photosensitized mechanism and the efficiency are investigated by means of the photoluminescence spectroscopy. The experimental data are discussed in view of possible biomedical applications of por-Si.

References

S.J. Arnold, M. Kubo, and E.A. Ogryzlo, Advan. Chem. Ser. 77, 133 (1968).

https://doi.org/10.1021/ba-1968-0077.ch070

Photodynamic Tumor Therapy: 2nd and 3rd Generation Photosensitizers, edited by J.G. Moser (Harwood, Amsterdam, 1998).

N.J. Turro, Modern Molecular Photochemistry (Univ. Sci. Books, Mill Valley, CA, 1991).

D.R. Kearns, Chem. Rev. 71, 395 (1971).

https://doi.org/10.1021/cr60272a004

D. Kovalev, E. Gross, N. Künzner, F. Koch, V.Yu. Timoshenko, and M. Fujii, Phys. Rev. Lett. 89, 137401 (2002).

https://doi.org/10.1103/PhysRevLett.89.137401

E. Gross, D. Kovalev, N. Künzner, F. Koch, V.Yu. Timoshenko, and M. Fujii, Phys. Rev. B 68, 115405 (2003).

https://doi.org/10.1103/PhysRevB.68.115405

O. Bisi, S. Ossicini, and L. Pavesi, Surf. Sci. Rep. 38, 1 (2000).

https://doi.org/10.1016/S0167-5729(99)00012-6

D. Kovalev, H. Heckler, G. Polisski, and F. Koch, Phys. Stat. Sol. (b) 215, 871 (1999).

https://doi.org/10.1002/(SICI)1521-3951(199910)215:2<871::AID-PSSB871>3.0.CO;2-9

A.A. Krasnovsky, jr., S.Yu. Egorov, O.V. Nasarova, B.I. Yartsev, and G.V. Ponamarev, Studia Biophys. 124, 123 (1988).

A.A. Krasnovsky, jr., Membr. Cell Biol. 12 (5), 665 (1998).

A.A. Krasnovsky, jr., N.N. Drozdova, Ya.V. Roumbal, A.V. Ivanov, abd R.V. Ambartzumian, Chinese Optics Lett. 3, S1 (2005).

A.A. Krasnovsky, jr., Ya.V. Roumbal, A.V. Ivanov, and R.V. Ambartzumian, Chem. Phys. Lett. 430, 260 (2006).

https://doi.org/10.1016/j.cplett.2006.08.083

M. Fujii, M. Usui, Sh. Hayashi, E. Gross, D. Kovalev, N. Künzner, J. Diener, and V.Yu. Timoshenko, J. Appl. Phys. 95, 3689 (2004).

https://doi.org/10.1063/1.1664021

D. Kovalev and M. Fujii, Adv. Mat. 17, 2531 (2005).

https://doi.org/10.1002/adma.200500328

V. Chirvony, V. Bolotin, E. Matveeva, V. Parkhutik, J. Photochem. Photobiol. A 181, 106 (2006).

https://doi.org/10.1016/j.jphotochem.2005.11.008

M.B. Gongalsky, E.A. Konstantinova, L.A. Osminkina, and V.Yu. Timoshenko, Semicond. 44, 89 (2010).

https://doi.org/10.1134/S106378261001015X

E.A. Konstantinova, V.A. Demin, A.S. Vorontzov, Yu.V. Ryabchikov, I.A. Belogorokhov, L.A. Osminkina, P.A. Forsh, P.K. Kashkarov, and V.Yu. Timoshenko, J. Non-Cryst. Solids 352, 1156 (2006).

https://doi.org/10.1016/j.jnoncrysol.2005.12.017

E.A. Konstantinova, V.A. Demin, V.Yu. Timoshenko, and P.K. Kashkarov, JETP Lett. 85, 59 (2007).

https://doi.org/10.1134/S0021364007010122

E.A. Konstantinova, V.A. Demin, and V.Yu. Timoshenko, J. Exp. Theor. Phys. 107, 473 (2008).

https://doi.org/10.1134/S1063776108090148

M. Fujii, S. Minobe, M. Usui, Sh. Hayashi, E. Gross, J. Diener, and D. Kovalev, Phys. Rev. B 70, 085311 (2004).

https://doi.org/10.1103/PhysRevB.70.085311

M. Fujii, M. Usui, Sh. Hayashi, E. Gross, D. Kovalev, N. Künzner, J. Diener, and V.Yu. Timoshenko, Phys. Stat. Sol. (a) 202, 1385 (2005).

https://doi.org/10.1002/pssa.200461107

M. Fujii, D. Kovalev, B. Goller, S. Minobe, Sh. Hayashi, and V.Yu. Timoshenko, Phys. Rev. B 72, 165321 (2005).

https://doi.org/10.1103/PhysRevB.72.165321

V.Yu. Timoshenko, A.A. Kudryavtsev, L.A. Osminkina, A.S. Vorontzov, Ya.V. Ryabchikov, I.A. Belogorokhov, D. Kovalev, and P.K. Kashkarov, JETP Lett. 83, 423 (2006).

https://doi.org/10.1134/S0021364006090128

H.H. Wasserman, Introductory remarks. in Singlet Oxygen, edited by H.H. Wasserman (Academic Press, New York, 1979).

H. Kautsky, Trans. Faraday Soc. 35, 216 (1939).

https://doi.org/10.1039/tf9393500216

T. Förster, Ann. der Phys. 2, 55 (1948).

https://doi.org/10.1002/andp.19484370105

D.L. Dexter, J. Chem. Phys. 21, 836 (1953).

https://doi.org/10.1063/1.1699044

S.Yu. Egorov, V.F. Kamalov, N.I. Koroteev, A.A. Krasnovsky, jr., B.N. Toleutaev, and S.V. Zinukov, Chem. Phys. Lett. 163, 421 (1989).

https://doi.org/10.1016/0009-2614(89)85161-9

R. Schmidt and H.-D. Brauer, J. Am. Chem Soc. 109, 6976 (1987).

https://doi.org/10.1021/ja00257a012

J.W. Snyder, E. Skovsen, J.D.C. Lambert, and P.R. Ogilby, J. Am. Chem. Soc. 127, 14558 (2005).

https://doi.org/10.1021/ja055342p

A. Uhlir, Bell Syst. Tech. 35, 333 (1956).

https://doi.org/10.1002/j.1538-7305.1956.tb02385.x

A.G. Cullis, L.T. Canham, and P.D.J. Calcott, J. Appl. Phys. 82, 965 (1997).

https://doi.org/10.1063/1.366536

G.D. Sanders and Y.-C. Chang, Phys. Rev. B 45, 9202 (1992).

https://doi.org/10.1103/PhysRevB.45.9202

B. Delley and E.F. Steigmeier, Appl. Phys. Lett. 67, 2370 (1995).

https://doi.org/10.1063/1.114348

G.C. John and V.A. Singh, Phys. Rep. 263, 93 (1995).

https://doi.org/10.1016/0370-1573(95)00052-4

D.A.G. Bruggeman, Ann. der Phys. 24, 636 (1935).

https://doi.org/10.1002/andp.19354160705

P.D.J. Calcott, K.J. Nash, L.T. Canham, M.J. Kane, and D. Brumhead, J. Phys., Condens. Matter 5, L91 (1993).

https://doi.org/10.1088/0953-8984/5/7/003

D.G. Yarkin, E.A. Konstantinova, and V.Yu. Timoshenko, Semicond. 29, 348 (1995).

I.V. Blonsky, M.S. Brodin, V.A. Thoryk, A.G. Filin, and Ju.P. Piryatinskij, Semicond. Sci. Technol. 12, 11 (1997).

https://doi.org/10.1088/0268-1242/12/1/003

A.N. Obraztsov, V.Yu. Timoshenko, H. Okushi, and H. Watanabe, Semiconductors 31, 534 (1997).

https://doi.org/10.1134/1.1187209

Yu.V. Ryabchikov, I.A. Belogorokhov, A.S. Vorontsov, L.A. Osminkina, V.Yu. Timoshenko, and P.K. Kashkarov, Phys. Stat. Sol. (a) 204, 1271 (2007).

https://doi.org/10.1002/pssa.200674306

Yu.V. Ryabchikov, I.A. Belogorokhov, M.B. Gongalsky, L.A. Osminkina, and V.Yu. Timoshenko, Semicond. 204, 1271 (2011).

https://doi.org/10.1002/pssa.200674306

D. Kovalev, E. Gross, J. Diener, V.Yu. Timoshenko, and M. Fujii, Appl. Phys. Lett. 85, 3590 (2004).

https://doi.org/10.1063/1.1804241

I.J. Langmuir, J. Am. Chem. Soc. 38, 2221 (1916).

https://doi.org/10.1021/ja02268a002

D. Rioux, M. Laferriere, A. Douplik, D. Shah, L. Lilge, A. Kabashin, M.M. Meunier, and J. Biomedic. Optics 14, 021010 (2009).

https://doi.org/10.1117/1.3086608

V.Yu. Timoshenko, L.A. Osminkina, A.S. Vorontzov, Ya.V. Ryabchikov, M.B. Gongalsky, A.I. Efimova, E.A. Konstantinova, T.Yu. Bazylenko, P.K. Kashkarov, and A.A. Kudryavtsev, Proc. of SPIE 60606, 66061E (2007).

H. Steller, Science 267, 1445 (1995).

https://doi.org/10.1126/science.7878463

L.T. Canham, Nanotechn. 18, 85704 (2007).

https://doi.org/10.1088/0957-4484/18/18/185704

J.-H. Park, L. Gi, G. von Maltzahn, E. Ruoslahti, S.N. Bhatia, and M. Sailor, Nature Mat. 8, 331 (2009).

https://doi.org/10.1038/nmat2398

D.E.J.G.J. Dolmans, D. Fukumura, and R.K. Jain, Nature Rev. Cancer 3, 380 (2003).

https://doi.org/10.1038/nrc1071

Downloads

Published

2022-02-06

How to Cite

Timoshenko, V. (2022). Photoluminescence Study of Porous Silicon as Photosensitizer of Singlet Oxygen Generation. Ukrainian Journal of Physics, 56(10), 1097. https://doi.org/10.15407/ujpe56.10.1097

Issue

Section

Nanosystems