Self-Organization of Hexadecyl Boron Acid Molecules on Atomically Flat Surface of Graphite

Authors

  • A.I. Senenko Institute of Physics, Nat. Acad. of Sci. of Ukraine
  • A.A. Marchenko Institute of Physics, Nat. Acad. of Sci. of Ukraine
  • A.G. Naumovets Institute of Physics, Nat. Acad. of Sci. of Ukraine
  • D.T. Taraschenko Institute of Physics, Nat. Acad. of Sci. of Ukraine
  • D.A. Glubokov Institute of Physics, Nat. Acad. of Sci. of Ukraine
  • Ya.Z. Voloshin A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences
  • A.A. Varzatskiy V.I. Vernadsky Institute of General and Inorganic Chemistry, National Academy of Sciences of Ukraine
  • A.L. Kapitanchuk Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe56.10.1091

Keywords:

-

Abstract

It has been shown that highly ordered monolayer films of hexadecyl boron acid CH3–(CH2)15–B(OH)2 can be obtained on the basal plane of highly oriented pyrolytic graphite by the deposition from a solution of the acid in n-tetradecane n-C14H30. Using the scanning tunneling microscopy, it has been found that the ordered monolayers have a lamella-like structure. In this structure, each lamella is composed of pairs (dimers) of molecules of the acid. The association of molecules in each pair is implemented through the interaction between B(OH)2-groups. It has been also found that molecules of solvent n-C14H30, being at a temperature sufficiently higher than the surface crystallization temperature can be coadsorbed with molecules of the acid. The coadsorption is explained by the geometric factor due to a specific size of the dimers of hexadecyl boron acid.

References

A. Ulman, Chem. Rev. 96, 1533 (1996).

https://doi.org/10.1021/cr9502357

S. Chiang, Chem. Rev. 07, 1083 (1997).

https://doi.org/10.1021/cr940555a

J.F. Weaver, A.F. Carlsson, and R.J. Madix, Surf. Sci. Rep. 50, 107 (2003).

F. Schreiber, Progress in Surface Science 65, 151 (2000).

https://doi.org/10.1016/S0079-6816(00)00024-1

J.M. Tour, M. Kowaki, and J.M. Seminario, J. Am. Chem. Soc. 120, 8486 (1998).

https://doi.org/10.1021/ja9808090

S. Kubatkin, A. Danilov, M. Hjort, J. Cornil, J.-L. Bredas, N. Stuhr-Hansen, P. Hedegard, and N. Bjernholm, Nature 425, 698 (2003).

https://doi.org/10.1038/nature02010

G.E. Poirier, Phys. Rev. Lett. 86, 83 (2001).

https://doi.org/10.1103/PhysRevLett.86.83

G. Hoffmann, L. Libioulle, and R. Berndt, Phys. Rev. B. 65, 212107 (2002).

https://doi.org/10.1103/PhysRevB.65.212107

P. Byszewski, E. Kowalska, M. Poplawska, M. Luczak, and Z. Klusek, J. Magn. Mater. 249, 486 (2002).

https://doi.org/10.1016/S0304-8853(02)00475-4

C.J. Brabec, N.S. Sariciftci, and J.C. Hummelen, Plast. Sol. Cells 11, 15 (2001).

https://doi.org/10.1002/1616-3028(200102)11:1<15::AID-ADFM15>3.0.CO;2-A

C.W. Tang and S.A. VanSlyke, Appl. Phys. Lett 51 (12), 913 (1987).

https://doi.org/10.1063/1.98799

Y. Sun, Y. Liu, and D. Zhu, J. Mater. Chem. 15, 53 (2005).

https://doi.org/10.1039/b411245h

D. Sujeewa, M. Silva, X. Zeng, G. Ungar, and S.J. Spells, Macromol. 35, 7730 (2002).

https://doi.org/10.1021/ma0206669

V.A. Shchukin and D. Bimberg, Rev. Mod. Phys. 71 (4), 1125 (1999).

https://doi.org/10.1103/RevModPhys.71.1125

J.S. Foster and J.E. Frommer, Nature 333, 542 (1998).

https://doi.org/10.1038/333542a0

C.L. Claypool, F. Faglioni, W.A. Goddard, H.B. Gray, N.S. Lewis, and R.A. Marcus, J. Phys. Chem. B 101, 5978 (1997).

https://doi.org/10.1021/jp9701799

R. Yamada and K. Uosaki, Langmuir 14, 855 (1998).

https://doi.org/10.1021/la970974d

J.B. Farmer, Adv. Ignor. Chem. Radiochem. 25, 187 (1982).

https://doi.org/10.1016/S0898-8838(08)60141-5

A. D. Becke, J. Chem. Phys. 98, 5648 (1993).

https://doi.org/10.1063/1.464913

C. Lee, W. Yang, and R.G. Parr, Phys. Rev. B 37, 785 (1988).

https://doi.org/10.1103/PhysRevB.37.785

B. Venkataraman, G. Flynn, J.L. Wilbur, J.P. Folkers, and G.M. Whitesides, J. Phys. Chem. 99, 8684 (1995).

https://doi.org/10.1021/j100021a038

G.G. McGonigal, R.H. Bernhardt, Y.H. Yeo, and D.J. Thomson, J. Vac. Sci. Technol. B 9(2), 1107 (1991).

J.P. Rabe, S. Buchholz, and L. Askadskaya, Synth. Met. 54, 339 (1993).

https://doi.org/10.1016/0379-6779(93)91080-L

A.I. Senenko, D.V. Stryzheus, A.A. Marchenko, and A.G. Naumovets, Materialwiss. Werkstofftech. 42, 55 (2011). https://doi.org/10.1002/mawe.201100731

Published

2022-02-06

How to Cite

Senenko А., Marchenko О., Naumovets А., Taraschenko Д., Glubokov Д., Voloshin Я., Varzatskiy О., & Kapitanchuk О. (2022). Self-Organization of Hexadecyl Boron Acid Molecules on Atomically Flat Surface of Graphite. Ukrainian Journal of Physics, 56(10), 1091. https://doi.org/10.15407/ujpe56.10.1091

Issue

Section

Nanosystems