Two-Dimensional Magnetoexcitons in the Fractional Quantum Hall Regime

Authors

  • S.A. Moskalenko Institute of Applied Physics, Academy of Sciences of Moldova
  • M.A. Liberman Departmant of Physics, Uppsala University
  • B.V. Novikov Institute of Physics, St.-Petersburg State University
  • E.S. Kiseliova Moldova State University
  • E.V. Dumanov Institute of Applied Physics, Academy of Sciences of Moldova
  • F. Cerbu Institute of Applied Physics, Academy of Sciences of Moldova

DOI:

https://doi.org/10.15407/ujpe56.10.1037

Keywords:

-

Abstract

The coplanar electrons and holes in a strong perpendicular magnetic field at low temperatures form magnetoexcitons when the
Coulomb interactions between electrons and holes lying on the lowest Landau levels play the main role. However, when the electrons and hole layers are spatially separated, and the Coulomb electron-hole interaction diminishes, a two-dimensional electron gas (2DEG) and a two-dimensional hole gas (2DHG) are formed. Their properties under conditions of the fractional quantum Hall effect can influence the properties of 2D magnetoexcitons. These properties are discussed in the present review.

References

I.V. Lerner and Yu.E. Lozovik, Zh. Eksp. Teor. Fiz. 78, 1167 (1980).

I.V. Lerner and Yu.E. Lozovik, J. Low Temper. Phys. 38, 333 (1980).

https://doi.org/10.1007/BF00114330

I.V. Lerner and Yu.E. Lozovik, Sov.Phys.-JETP 53, 763, (1981).

A.B. Dzyubenko and Yu.E. Lozovik, Sov. Phys. Solid State 25, 874 (1983); 26, 938 (1984); J. Phys. A 24, 415 (1991).

https://doi.org/10.1088/0305-4470/24/2/015

D. Paquet, T.M. Rice, and K. Ueda, Phys. Rev. B 32, 5208 (1985)

https://doi.org/10.1103/PhysRevB.32.5208

T.M. Rice, D. Paquet, and K. Ueda, Helv. Phys. Acta 58, 410 (1985).

S.A. Moskalenko and D.W. Snoke, Bose-Einstein Condensation of Excitons and Biexcitons and Coherent Nonlinear Optics with Excitons

(Cambridge Univ. Press, Cambridge, 2000).

S.A. Moskalenko, M.A. Liberman, P.I. Khadzhi, E.V. Dumanov, Ig.V. Podlesny, and V. Botan, Sol. State Comm. 140/5, 236 (2006)

https://doi.org/10.1016/j.ssc.2006.08.010

S.A. Moskalenko, M.A. Liberman, P.I. Khadzhi, E.V. Dumanov, Ig.V. Podlesny, and V. Botan, Physica E 39/1, 137 (2007).

https://doi.org/10.1016/j.physe.2007.02.004

S.A. Moskalenko, M.A. Liberman, E.V. Dumanov, J. of Nanoelectron. and Optoelectron. 4, 52 (2009).

https://doi.org/10.1166/jno.2009.1005

E. Prange and S.M. Girvin, The Quantum Hall Effect, (Springer, New York, 1986).

https://doi.org/10.1007/978-1-4684-0499-9

H. Enger, Vortices in Chern-Simons-Ginzburg-Landau Theory and the Fractional Quantum Hall Effect, Thesis submitted to the degree

of Candidatus Scientiarum (Univ. of Oslo, Oslo, 1998).

L.D. Landau and E.M. Lifshitz, Statistical Physics (Pergamon, Oxford, 1969).

V.L. Ginzburg and L.D. Landau, Zh. Eksp. Teor. Fiz. 20, 1064 (1950).

V.L. Ginzburg and L.P. Pitaevskii, Zh. Eksp. Teor. Fiz. 34, 1240 (1958).

L.P. Pitaevskii, Sov. Phys. JETP 12, 155 (1961).

https://doi.org/10.1088/0508-3443/12/4/307

E.P. Gross, Nuovo Cimento 20, 454 (1961).

https://doi.org/10.1007/BF02731494

P. Nozieres and D. Pines, The theory of Quantum Liquids (Addison-Wesley, New York, 1990).

N.N. Bogoliubov, Izv. Akad. Nauk SSSR Ser. Fiz. 11, 77 (1947), Collection of papers in three volumes (Naukova Dumka, Kiev, 1971), Vol. 2 and 3 (in Russian).

S.M. Girvin, The quantum Hall effect: Novel Excitations and Broken-Symmetries (Indiana Univ., Bloomington, 1998).

S.M. Girvin and A.H. MacDonald, Phys. Rev. Lett. 58, 1252 (1987).

https://doi.org/10.1103/PhysRevLett.58.1252

S.C. Zhang, T.H. Hanson, and S. Kivelson, Phys. Rev. Lett. 62, 82 (1989).

https://doi.org/10.1103/PhysRevLett.62.82

S.M. Girvin, A.H. MacDonald, and P.M. Platzman, Phys. Rev. Lett. 54, 581 (1985); Phys. Rev. B 33, 2481 (1986).

https://doi.org/10.1103/PhysRevLett.54.581

R.B. Laughlin, Phys. Rev. Lett. 60, 2677 (1988).

https://doi.org/10.1103/PhysRevLett.60.2677

S. Kivelson, C. Kallin, D.P. Arovas, and J. Schrieffer, Phys. Rev. Lett. 56, 873 (1986).

https://doi.org/10.1103/PhysRevLett.56.873

D.H. Lee, G. Baskaran, and S. Kivelson, Phys. Rev. Lett. 59, 2467 (1987).

https://doi.org/10.1103/PhysRevLett.59.2467

L.K. Myklebust, Quantized Vortices, Cand. Scient. Thesis, University of Oslo, 1996.

R. Jackiw and So Young Pi, Phys. Rev. D 42, 3500 (1990).

https://doi.org/10.1103/PhysRevD.42.3500

L. Onsager, Nuovo Cimento 6, Suppl. 2, 249 (1949).

https://doi.org/10.1007/BF02780991

R.P. Feynman, in Progress in Low Temperature Physics, edited by C.J. Gorter (North-Holland, Amsterdam, 1955), Vol. 1, p.17.

W.F. Vinen, Nature 181, 1524 (1958)

https://doi.org/10.1038/1811524a0

Proc. R. Soc. A 260, 218 (1961).

https://doi.org/10.1098/rspa.1961.0029

P.G. De Gennes, Superconductivity of Metals and Alloys (Benjamin, New-York, 1966).

A.A. Abrikosov, Sov. Phys. JETP 5, 1174 (1957).

F. London, Superfluids (Wiley, New York, 1950).

R.B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983).

https://doi.org/10.1103/PhysRevLett.50.1395

H.L. Stormer, Rev. Mod. Phys. 71, 875 (1999).

https://doi.org/10.1103/RevModPhys.71.875

S.S. Chern and J. Simons, Proc. Nat. Acad. Sci. USA 68, 791 (1971).

https://doi.org/10.1073/pnas.68.4.791

F. Wilczek, Phys. Rev. Lett. 48, 1144 (1982); 49, 957 (1982).

https://doi.org/10.1103/PhysRevLett.49.957

R.B. Laughlin, Rev. Mod. Phys. 71, 863 (1999).

https://doi.org/10.1103/RevModPhys.71.863

J.K. Jain. Composite Fermions (Cambridge Univ. Press, Cambridge, 2007).

https://doi.org/10.1017/CBO9780511607561

N. Read, Phys. Rev. Lett. 62, 86 (1989).

https://doi.org/10.1103/PhysRevLett.62.86

N. Read, Semicond. Sci. Techn. 9, 1859 (1994).

https://doi.org/10.1088/0268-1242/9/11S/002

N. Read, arxiv. Cond-mat (9501090V), 19 Jan., 1995.

N. Read, Phys. Rev. B 58, 16262 (1998).

https://doi.org/10.1103/PhysRevB.58.16262

B.L. Halperin, P.A. Lee, and N. Read, Phys. Rev. B 47, 7312 (1993).

https://doi.org/10.1103/PhysRevB.47.7312

S.A. Moskalenko, M.A. Liberman, D.W. Snoke, and V.V. Botan, Phys. Rev. B 66, 245316 (2002).

https://doi.org/10.1103/PhysRevB.66.245316

D.H. Lee and S.C. Zhang, Phys. Rev. Lett. 66, 1220 (1991).

https://doi.org/10.1103/PhysRevLett.66.1220

J. Goldstone, Nuovo Cimento 19, 154 (1961).

https://doi.org/10.1007/BF02812722

C. Kallin and B.I. Halperin, Phys. Rev. B 30, 5655 (1984).

https://doi.org/10.1103/PhysRevB.30.5655

A.H. MacDonald, E.A. Rezayi, and D. Keller, Phys. Rev. Lett. 68, 1939 (1992).

https://doi.org/10.1103/PhysRevLett.68.1939

Y.N. Joglekar and A.H. MacDonald, Phys. Rev. B 64, 155315 (2001).

https://doi.org/10.1103/PhysRevB.64.155315

V.L. Berezinskii, JETP 59, 907 (1970).

J.M. Kosterlitz and D.J. Touless, J. Phys. C 6, 1181 (1973).

https://doi.org/10.1088/0022-3719/6/7/010

Downloads

Published

2022-02-06

How to Cite

Moskalenko, S., Liberman, M., Novikov, B., Kiseliova, E., Dumanov, E., & Cerbu, F. (2022). Two-Dimensional Magnetoexcitons in the Fractional Quantum Hall Regime. Ukrainian Journal of Physics, 56(10), 1037. https://doi.org/10.15407/ujpe56.10.1037

Issue

Section

Solid matter