Diffusion in a Frozen Random Velocity Field

Authors

  • V.I. Zasenko Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine
  • A.G. Zagorodny Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine
  • O.M. Chernyak Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe56.10.1007

Keywords:

-

Abstract

Particle diffusion in a frozen isotropic 2D random velocity field is studied by simulation, and the results are compared with the prediction of a simple model. The model accounts for the effects of particle trapping and infinite correlation time.

References

R.H. Kraichnan, Phys. Fluids 13, 22 (1970).

https://doi.org/10.1063/1.1692799

A.V. Gruzinov, M.B. Isichenko, and Ya.L. Kalda, Sov. Phys. JETP 70, 263 (1990).

J.D. Reuss and J.H. Misguich, Phys. Rev. E 54, 1857 (1996).

https://doi.org/10.1103/PhysRevE.54.1857

M. Vlad, F. Spineanu, J.H. Misguich, and R. Balescu, Phys. Rev. E 58, 7359 (1998).

https://doi.org/10.1103/PhysRevE.58.7359

M. Vlad, F. Spineanu, J.H. Misguich, and R. Balescu, Phys. Rev. E 63, 066304 (2001).

https://doi.org/10.1103/PhysRevE.63.066304

M. Vlad, F. Spineanu, J.H. Misguich, J.D. Reuss, R. Balescu, K. Itoh, and S.I. Itoh, Plasma Phys. Controlled Fusion 46, 1051 (2004).

https://doi.org/10.1088/0741-3335/46/7/005

T. Hauff and F. Jenko, Phys. Plasm. 13, 102309 (2006).

https://doi.org/10.1063/1.2360173

V. Zasenko, A. Zagorodny, and J. Weiland, Phys. Plasmas 12, 062311 (2005).

https://doi.org/10.1063/1.1931677

V. Zasenko, A. Zagorodny, and J. Weiland, Ukr. J. Phys. 53, 517 (2008).

Downloads

Published

2022-02-06

How to Cite

Zasenko, V., Zagorodny, A., & Chernyak, O. (2022). Diffusion in a Frozen Random Velocity Field. Ukrainian Journal of Physics, 56(10), 1007. https://doi.org/10.15407/ujpe56.10.1007

Issue

Section

Plasmas and gases

Most read articles by the same author(s)

1 2 > >>