Formation of Dark Dissipative Solitons in Media with Nonlocal Response

Authors

  • S.A. Bugaychuk Institute of Physics, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe56.11.1171

Keywords:

-

Abstract

For the problem of two-wave self-diffraction in a nonlocal nonlinear medium considered in the reflection geometry, the steady state solutions in terms of the tanh function have been found for the distribution of dynamical grating amplitudes and for the distribution of intensity maxima in the interference pattern. The solutions for the mixed-wave intensities turned out to depend on the area under the curve describing the grating-amplitude distribution function. The distribution in the form of the tanh function shifts along the direction of wave propagation, when the ratio of the intensities for the input waves changes. The dynamical problem is solved numerically for the case of two interacting Gaussian beams. It has been demonstrated that the shape of output beams can be controlled by varying the time delay between the input pulses, hence creating various dissipative solitons, including grating-amplitude distributions, in the medium bulk.

References

R.W. Boyd, Nonlinear Optics (San Diego, Academic Press, 1992).

J.H. Hong and R. Saxema, Opt. Lett. 16, 180 (1991).

https://doi.org/10.1364/OL.16.000180

S. Bugaychuk, A. Kutana, and A. Khiznyak, Quant. Electron. 27, 727 (1997).

https://doi.org/10.1070/QE1997v027n08ABEH001024

S. Bugaychuk, L. Kovacs, G. Mandula et al., Phys. Rev. E 67, 046603 (2003).

https://doi.org/10.1103/PhysRevE.67.046603

S. Bugaychuk and R. Conte, Phys. Rev. E 80, 066603 (2009).

https://doi.org/10.1103/PhysRevE.80.066603

M. Jeganathan, M.C. Bashaw, and L. Hesselink, J. Opt. Soc. Am. B 12, 1370 (1995).

https://doi.org/10.1364/JOSAB.12.001370

A.I. Khizhnyak, S.G. Odoulov, and M.S. Soskin, Optical Oscillators with Degenerate Four-Wave Mixing (Dynamic Grating Lasers) (Harwood, London, 1991).

A. Parola, L. Salasnich, and L. Reatto, Phys. Rev. A 57, R3180 (1998).

https://doi.org/10.1103/PhysRevA.57.R3180

V.M. Perez-Garcia, V.V. Konotop, and J.J. Garcia-Ripoll, Phys. Rev. E 62, 4300 (2000).

https://doi.org/10.1103/PhysRevE.62.4300

C. Rotschild, O. Cohen, O. Manela et al., Phys. Rev. Lett. 95, 213904 (2005).

https://doi.org/10.1103/PhysRevLett.95.213904

S. Skupin, M. Saffman, and W. Krolikowski, Phys. Rev. Lett. 98, 263902 (2007).

https://doi.org/10.1103/PhysRevLett.98.263902

A.A. Zozulya and D.Z. Anderson, Phys. Rev. A 51, 1520 (1995).

https://doi.org/10.1103/PhysRevA.51.1520

W. Krolikowski, O. Bang, J.J. Rasmussen et al., Phys. Rev. E 64, 016612 (2001).

https://doi.org/10.1103/PhysRevE.64.016612

C. Conti, M. Peccianti, and G. Assanto, Phys. Rev. Lett. 91, 073901 (2003).

https://doi.org/10.1103/PhysRevLett.91.073901

E. Ultanir, G.I. Stegeman, D. Michaelis et al., in Dissipative Solitons, edited by N. Akhmediev and A. Ankiewicz (Springer, Berlin,

, p. 37.

N.N. Rosanov, S.V. Fedorov, and A.N. Shatsev, in Dissipative Solitons: From Optics to Biology and Medicine, edited by N. Akhmediev and A. Ankiewicz (Springer, New York, 2008), p. 93.

B. Sturman, E. Povidilov, and M. Gorkunov, Phys. Rev. E 72, 016621 (2005).

https://doi.org/10.1103/PhysRevE.72.016621

Dissipative Solitons, edited by N. Akhmediev and A. Ankiewicz (Springer, Berlin, 2005).

I.S. Aranson and L. Kramer, Rev. Mod. Phys. 74, 99 (2002).

https://doi.org/10.1103/RevModPhys.74.99

R.K. Dodd, J.C. Eilbeck, J.D. Gibbon, and H.C. Morris, Solitons and Nonlinear Wave Equations, (Harcourt Brace Jovanovich, New York, 1982).

Published

2022-02-03

How to Cite

Bugaychuk С. (2022). Formation of Dark Dissipative Solitons in Media with Nonlocal Response. Ukrainian Journal of Physics, 56(11), 1171. https://doi.org/10.15407/ujpe56.11.1171

Issue

Section

Optics, lasers, and quantum electronics