Photoconductivity in Bilateral Macroporous Silicon

Authors

  • V.F. Onyshchenko V.Ye. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe67.12.841

Keywords:

bilateral macroporous silicon, photoconductivity, porous, excess charge carriers

Abstract

The specific photoconductivity and the excess minority carrier concentration in bilateral macroporous silicon depending on the pore depth and the bulk lifetime of minority charge carriers are calculated. The diffuse model is used to calculate the photoconductivity and the excess minority carrier concentration. The mathematical description of the diffusion model contains a general solution to the diffusion equation and a boundary condition written at the boundaries of a monocrystalline substrate and a sample of bilateral macroporous silicon. It is taken into account that light illuminates the monocrystalline substrate through the bottom of the pores. The dependence of the specific photoconductivity of bilateral macroporous silicon on the pore depth and the bulk lifetime of minority charge carriers decrease, if the pore depth increases, and if the bulk lifetime decreases. The dependence of the excess minority carrier concentration on the coordinate and bulk lifetime of minority charge carriers in bilateral macroporous silicon has one maximum in the case of uniform generation of excess charge carriers or two maxima in the case of inhomogeneous generation of excess charge carriers.

References

M. Treideris, V. Bukauskas, A. Reza, I. Simkiene, A. Setkus, A. Maneikis, V. Strazdiene. Macroporous silicon structures for light harvesting. Mater. Sci. E 21, 3 (2015).

https://doi.org/10.5755/j01.ms.21.1.5725

G. Loget, A. Vacher, B. Fabre, F. Gouttefangeas, L. Joanny, V. Dorcet. Enhancing light trapping of macroporous silicon by alkaline etching: application for the fabrication of black Si nanospike arrays. Materials Chemistry Frontiers 9, 1881 (2017).

https://doi.org/10.1039/C7QM00191F

M. Ernst, H. Schulte-Huxel, R. Niepelt, S. Kajari-Schroder, R. Brendel. Thin crystalline macroporous silicon solar cells with ion implanted emitter. Energy Procedia 38 910 (2013).

https://doi.org/10.1016/j.egypro.2013.07.364

N. Mendoza-Aguero, V. Agarwal, H.I. Villafan-Vidales, J. Campos-Alvarez, P.J. Sebastian. A heterojunction based on macroporous silicon and zinc oxide for solar cell application. J. New Mater. for Electrochem. Systems. 18 (4), 225 (2015).

https://doi.org/10.14447/jnmes.v18i4.352

A.V. Sachenko, V.P. Kostylyov, R.M. Korkishko, V.M. Vlasyuk, I.O. Sokolovskyi, B.F. Dvernikov, V.V. Chernenko, M. Evstigneev. Key parameters of textured silicon solar cells of 26.6 photoconversion efficiency. Semicond. Phys. Quantum Electron. Optoelectron. 24 (2), 175 (2021).

L.A. Karachevtseva, V.F. Onyshchenko, A.V. Sachenko. Kinetics of Photoconductivity in Macroporous Silicon Structures. Ukr. J. Phys. 53 (9), 874 (2008).

M. Ernst, R. Brendel. Modeling effective carrier lifetimes of passivated macroporous silicon layers. Solar Energy Materials and Solar Cells 95 (4), 1197 (2020).

https://doi.org/10.1016/j.solmat.2011.01.017

V.F. Onyshchenko, L.A. Karachevtseva. Effective minority carrier lifetime in double-sided macroporous silicon. Semicond. Phys. Quantum Electron. Optoelectron. 23 (1), 29 (2020).

https://doi.org/10.15407/spqeo23.01.029

V.F. Onyshchenko. Distribution of excess charge carriers in bilateral macroporous silicon with different thicknesses of porous layers. J. Nano-Electron. Phys. 13 (6), 06010 (2021).

https://doi.org/10.21272/jnep.13(6).06010

L.S. Monastyrskii, B.S. Sokolovskii, M.R. Pavlyk. Analytical and numerical calculations of photoconductivity in porous silicon. Ukr. J. Phys. 56 (9), 902 (2011).

https://doi.org/10.1155/2011/896962

Published

2023-02-14

How to Cite

Onyshchenko, V. (2023). Photoconductivity in Bilateral Macroporous Silicon. Ukrainian Journal of Physics, 67(12), 841. https://doi.org/10.15407/ujpe67.12.841

Issue

Section

Semiconductors and dielectrics