Gamma-Ray and Neutrino Radiation from Coma Cluster (A1656)


  • R.B. Hnatyk Astronomical Observatory, Taras Shevchenko National University of Kyiv
  • V.V. Voitsekhovskyi Astronomical Observatory, Taras Shevchenko National University of Kyiv



galaxy clusters, Coma cluster, cosmic rays, gamma radiation, neutrino radiation


Galaxy clusters (GCs) are the largest and the most massive gravitationally bounded objects in the large-scale structure of the Universe. Due to the high (of the order of a few keV) temperature of virialized gas in the intracluster medium (ICM) and the presence of cosmic rays (CRs), GCs are effective sources of thermal X-ray and non-thermal lepton (synchrotron) radiation. GCs are also storage rooms for CRs because the time of CR diffusive escape from GCs exceeds the age of the Universe. However, non-thermal hadronic gamma-ray emission from GCs, which mainly arises due to proton-proton collisions of CRs and thermal protons of ICM plasma and the subsequent decay of neutral pions, has not yet been robustly detected. In this paper, we model the expected non-thermal hadronic gamma-ray radiation and neutrino flux from the Coma cluster (A1656) and evaluate the prospects for registering this radiation making use of available (Fermi-LAT, LHAASO, IceCube) and planned (CTA, IceCube-Gen2) ground-based detectors.


G.M. Voit. Tracing cosmic evolution with clusters of galaxies. Rev. Mod. Phys. 77, 207 (2005).

V.Springel, C. Frenk, S. White. The large-scale structure of the Universe. Nature 440, 1137 (2006).

S. Allen, A. Evrard, A. Mantz. Cosmological parameters from observations of galaxy clusters. Ann. Rev. Astron. Astrophys. 49, 409 (2011).

V. Berezinsky, P. Blasi, V. Ptuskin. Clusters of galaxies as storage room for cosmic rays. Astrophys. J. 487, 529 (1997).

J. Mohr, B. Mathiesen, A. Evrard. Properties of the intracluster medium in an ensemble of nearby galaxy clusters. Astrophys. J. 517, 627 (1999).

C. Pfrommer, T. Enslin. Constraining the population of cosmic ray protons in cooling flow clusters with y-ray and radio observations: Are radio mini-halos of hadronic origin? Astron. Astrophys. 413, 17 (2004).

A. Pinzke, C. Pfrommer. Simulating the y-ray emission from galaxy clusters: a universal cosmic ray spectrum and spatial distribution. Mon. Not. R. Astron. Soc. 409, 449 (2010).

M. Ackermann, A. Ajello, A. Allafort et al. Search for cosmic-ray-induced gamma-ray emission in galaxy clusters. Astrophys. J. 787, 18 (2014).

D. Wittor. On the challenges of cosmic-ray proton shock acceleration in the intracluster medium. New Astron. 85, 101550 (2021).

R. Adam, H. Goksu, A. Leingartner-Goth et al. MINOT: Modeling the intracluster medium (non-)thermal content and observable prediction tools. Astron. Astrophys. 644, A70 (2020).

Planck Collaboration et al. Planck 2015 results. XIII. Cosmological parameters. Astron. Astrophys. 594, A13 (2016).

S.-Q. Xi, X.-Y. Wang, Y.-F. Liang et al. Detection of gamma-ray emission from the Coma cluster with Fermi Large Area Telescope and tentative evidence for an extended spatial structure. Phys. Rev. D 98, 063006 (2018).

R. Adam, H. Goksu, S. Brown et al. y-ray detection toward the Coma cluster with Fermi-LAT: Implications for the cosmic ray content in the hadronic scenario. Astron. Astrophys. 648, A60 (2021).

S. Garrappa, S. Buson, Fermi-LAT Collaboration. FermiLAT gamma-ray observations of IceCube-200921A and detection of a new gamma-ray source, Fermi J1256.9 + 2630. GRB Coordinates Network 28481, 1 (2020).

Planck Collaboration et al. Planck 2013 results. XX. Cosmology from Sunyaev-Zeldovich cluster counts. Astron. Astrophys. 571, A20 (2014).

R. Piffaretti, R. Valdarnini. Total mass biases in X-ray galaxy clusters. Astron. Astrophys. 491, 1 (2008).

A. Cavaliere, R. Fusco-Femiani. The distribution of hot gas in clusters of galaxies. Astron. Astrophys. 70, 677 (1978).

D. Nagai, A.V. Kravtsov, A. Vikhlinin. Effects of galaxy formation on thermodynamics of the intracluster medium. Astrophys. J. 668, 1 (2007).

J. Navarro, C. Frenk, S. White. The structure of cold dark matter halos. Astrophys. J. 462, 563 (1996).

M. Arnaud, G.W. Pratt, R. Piffaretti et al. The universal galaxy cluster pressure profile from a representative sample of nearby systems (REXCESS) and the YSZ - M500 relation. Astron. Astrophys. 517, A92 (2010).

A. Bonafede, L. Feretti, M. Murgia et al. The Coma cluster magnetic field from Faraday rotation measures. Astron. Astrophys. 513, A30 (2010).

M. Murgia, F. Govoni, L. Feretti et al. Magnetic fields and Faraday rotation in clusters of galaxies. Astron. Astrophys. 424, 2 (2004).

G. Hurier, R. Adam, U. Keshet. First detection of a virial shock with SZ data: implication for the mass accretion rate of Abell 2319. Astron. Astrophys. 622, A136 (2019).

E. Churazov, I. Khabibullin, N. Lyskova et al. Tempestuous life beyond R500: X-ray view on the Coma cluster with SRG/eROSITA. I. X-ray morphology, recent merger, and radio halo connection. Astron. Astrophys. 651, A41 (2021).

E. Dwek, F. Krennrich. The extragalactic background light and the gamma-ray opacity of the universe. Astropart. Phys. 43, 112 (2013).

X. Bai, B.Y. Bi, X.J. Bi et al. The Large High Altitude Air Shower Observatory (LHAASO) Science White Paper - 2021 Edition. arXiv: 1905.02773 [astro-ph.HE] (2019).

Ice Cube Collaboration et al. Search for steady point-like sources in the astrophysical muon neutrino flux with 8 years of IceCube data. Eur. Phys. J. C 79, 234 (2019).

G.R. Werner, D.A. Uzdensky, B. Cerutti et al. The extent of power-law energy spectra in collisionless relativistic magnetic reconnection in pair plasmas. Astrophys. J. Lett. 816, L8 (2016).



How to Cite

Hnatyk, R., & Voitsekhovskyi, V. (2022). Gamma-Ray and Neutrino Radiation from Coma Cluster (A1656). Ukrainian Journal of Physics, 67(2), 102.



Fields and elementary particles