Induced Vacuum Current and Magnetic Flux in Quantum Scalar Matter in the Background of a Vortex Defect with the Neumann Boundary Condition

Authors

  • V.M. Gorkavenko Taras Shevchenko National University of Kyiv, Ukraine
  • T.V. Gorkavenko Taras Shevchenko National University of Kyiv, Ukraine
  • Yu.A. Sitenko Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine
  • M.S. Tsarenkova Taras Shevchenko National University of Kyiv, Ukraine

DOI:

https://doi.org/10.15407/ujpe67.1.3

Keywords:

vacuum polarization, Aharonov–Bohm effect, vortex defect

Abstract

A topological defect in the form of the Abrikosov–Nielsen–Olesen vortex in the space of an arbitrary dimension is considered as a gauge-flux-carrying tube that is impenetrable for quantum matter. The charged scalar matter field is quantized in the vortex background with the perfectly rigid (Neumann) boundary condition imposed at the side surface of the vortex. We show that a current circulating around the vortex is induced in the vacuum, if the Compton wavelength of the matter field exceeds the transverse size of the vortex considerably. The vacuum current is periodic in the value of the gauge flux of the vortex, providing a quantum-field-theoretical manifestation of the Aharonov–Bohm effect. The vacuum current leads to the appearance of an induced vacuum magnetic flux that, for some values of the tube thickness, exceeds the vacuum magnetic flux induced by a singular vortex filament. The results are compared to those obtained earlier in the case of the perfectly reflecting (Dirichlet) boundary condition imposed at the side surface of the vortex. It is shown that the absolute value of the induced vacuum current and the induced vacuum magnetic flux in the case of the Neumann boundary condition is greater than in the case of the Dirichlet boundary condition.

References

A.J. Beekman, L. Rademaker, Jasper van Wezel. An introduction to spontaneous symmetry breaking. SciPost Phys. Lect. Notes 11, 1 (2019).

https://doi.org/10.21468/SciPostPhysLectNotes.11

A. Vilenkin, E.P.S. Shellard. Cosmic Strings and Other Topological Defects (Cambridge University Press, 1994) [ISBN: 0-521-39153-9].

R.H. Brandenberger. Topological defects and structure formation. Int. J. Mod. Phys. A 09, 2117 (1994).

https://doi.org/10.1142/S0217751X9400090X

A.A. Abrikosov. On the magnetic properties of superconductors of the second group. Sov. Phys.-JETP 5, 1174 (1957).

H.B. Nielsen, P. Olesen. Vortex-line models for dual strings. Nucl. Phys. B 61, 45 (1973).

https://doi.org/10.1016/0550-3213(73)90350-7

M.B. Hindmarsh, T.W.B. Kibble. Cosmic strings. Rep. Prog. Phys. 58, 477 (1995).

https://doi.org/10.1088/0034-4885/58/5/001

E.J. Copeland, T.W.Kibble. Cosmic strings and superstrings. Proc. Roy. Soc. A 466, 623 (2010).

https://doi.org/10.1098/rspa.2009.0591

R.P. Huebener. Magnetic Flux Structure in Superconductors (Springer-Verlag Berlin Heidelberg, 1979) [ISBN: 978-3-662-02307-5].

https://doi.org/10.1007/978-3-662-02305-1

B. Rosenstein, D. Li. Ginzburg-Landau theory of type II superconductors in magnetic field. Rev. Mod. Phys. 82, 109 (2010).

https://doi.org/10.1103/RevModPhys.82.109

V. Berezinsky, B. Hnatyk, A. Vilenkin. Gamma ray bursts from superconducting cosmic strings. Phys. Rev. D 64, 043004 (2001).

https://doi.org/10.1103/PhysRevD.64.043004

R. Brandenberger, H. Firouzjahi, J. Karoubi, S. Khosravi. Gravitational radiation by cosmic strings in a junction. J. Cosmol. Astropart. Phys. 01, 008 (2009).

https://doi.org/10.1088/1475-7516/2009/01/008

M.G. Jackson, X. Siemens. Gravitational wave bursts from cosmic superstring reconnections. J. High Energy Phys. 06, 089 (2009).

https://doi.org/10.1088/1126-6708/2009/06/089

Y. Aharonov, D. Bohm. Significance of electromagnetic potentials in the quantum theory. Phys. Rev. 115, 485 (1959).

https://doi.org/10.1103/PhysRev.115.485

A. Tonomura. The AB effect and its expanding applications. J. Phys. A: Math. Theor. 43, 35402 (2010).

https://doi.org/10.1088/1751-8113/43/35/354021

D.R. Nelson. Defects and Geometry in Condensed Matter Physics (Cambridge University Press, 2002) [ISBN: 0-521-80159-1].

G.E. Volovik. The Universe in a Helium Droplet (Clarendon, 2003).

Yu.A. Sitenko, A.Yu. Babansky. The Casimir-Aharonov-Bohm effect? Mod. Phys. Lett. A 13, 379 (1998).

https://doi.org/10.1142/S0217732398000437

Yu.A. Sitenko, A.Yu. Babansky. Effects of boson-vacuum polarization by a singular magnetic vortex. Phys. Atom. Nucl. 61, 1594 (1998).

Yu.A. Sitenko. One-loop effective action for the extended spinor electrodynamics with violation of Lorentz and CPT

symmetry. Phys. Lett. B 515, 414 (2001).

https://doi.org/10.1016/S0370-2693(01)00862-0

V.M. Gorkavenko, I.V. Ivanchenko, Yu.A. Sitenko. Induced vacuum current and magnetic field in the background of a vortex. Int. J. Mod. Phys. A 31, 1650017 (2016).

https://doi.org/10.1142/S0217751X16500172

V.M. Gorkavenko, Yu.A. Sitenko, O.B. Stepanov. Polarization of the vacuum of a quantized scalar field by an impenetrable magnetic vortex of finite thickness. J. Phys. A: Math. Theor. 43, 175401 (2010).

https://doi.org/10.1088/1751-8113/43/17/175401

V.M. Gorkavenko, Yu.A. Sitenko, O.B. Stepanov. Vacuum energy induced by an impenetrable flux tube of finite radius. Int. J. Mod. Phys. A 26, 3889 (2011).

https://doi.org/10.1142/S0217751X11054346

V.M. Gorkavenko, Yu.A. Sitenko, O.B. Stepanov. Casimir force induced on a plane by an impenetrable flux tube of finite radius. Ukr. J. Phys. 58, 424 (2013).

https://doi.org/10.15407/ujpe58.05.0424

V.M. Gorkavenko, Yu.A. Sitenko, O.B. Stepanov. Casimir energy and force induced by an impenetrable flux tube of finite radius. Int. J. Mod. Phys. A 28, 1350161 (2013). https://doi.org/10.1142/S0217751X13501613

Yu.A. Sitenko, V.M Gorkavenko. Properties of the ground state of electronic excitations in carbon-like nanocones. Low Temp. Phys. 44, 1261 (2018). https://doi.org/10.1063/1.5078524

Yu.A. Sitenko, V.M. Gorkavenko. Induced vacuum magnetic flux in quantum spinor matter in the background of a topological defect in two-dimensional space. Phys. Rev. D 100, 085011 (2019). https://doi.org/10.1103/PhysRevD.100.085011

Yu.A. Sitenko. Induced vacuum magnetic field in the cosmic string background. Phys. Rev. D 104, 045013 (2021). https://doi.org/10.1103/PhysRevD.104.045013

Downloads

Published

2022-02-11

How to Cite

Gorkavenko, V., Gorkavenko, T., Sitenko, Y., & Tsarenkova, M. (2022). Induced Vacuum Current and Magnetic Flux in Quantum Scalar Matter in the Background of a Vortex Defect with the Neumann Boundary Condition. Ukrainian Journal of Physics, 67(1), 3. https://doi.org/10.15407/ujpe67.1.3

Issue

Section

Fields and elementary particles

Most read articles by the same author(s)