Calculation of Critical Temperature for a Bose Gas with Long-Range Forces


  • V.S. Pastukhov Ivan Franko National University of Lviv





The critical temperature has been calculated for a Bose gas with the power-law dependence of the potential energy of interaction between particles on the interparticle distance. The result obtained satisfies the limiting cases known from the literature. The parameters of the collective excitation spectrum of the model have been analyzed in the random phase approximation (RPA). The long-wavelength asymptote has been derived for the structure factor of the system above the phase transition temperature.


L.L. Foldy, Phys. Rev. 124, 649 (1961); Phys. Rev. 125, 2208 (1962).

A.L. Fetter, Ann. Phys. 64, 1 (1971).

S. Ma, Phys. Rev. Lett. 29, 1311 (1972).

P.V. Panat, H.E. DeWitt, and J.C. Garrison, Phys. Rev. A 8, 3154 (1973).

R.F. Bishop, J. Low Temp. Phys. 15, 601 (1974).

E.B. Kolomeisky and J.P. Straley, Phys. Rev. B 46, 13942 (1992).

T.D. Lee and C.N. Yang, Phys. Rev. 105, 1119 (1957)

T.D. Lee, K. Huang, and C.N. Yang, Phys. Rev. 106, 1135 (1957).

I.O. Vakarchuk and V.S. Pastukhov, Zh. Fiz. Dosl. (to be published).

I.O. Vakarchuk, Introduction to the Many-Body Problem (Lviv Nat. Univ., Lviv, 1999) (in Ukrainian).

S.R. Hore and N.E. Frankel, Phys. Rev. B 12, 2619 (1975).

A.L. Fetter and J.D. Walecka, Quantum Theory of Many-Particle Systems (McGraw-Hill, New York, 1971).

D.N. Zubarev, Usp. Fiz. Nauk 71, 71 (1960).

V.S. Pastukhov, Ukr. Fiz. Zh. 56, 556 (2011).

G. Baym, J.-P. Blaizot, and J. Zinn-Justin, Europhys. Lett. 49, 150 (2000).

V.A. Kashurnikov, N.V. Prokof'ev, and B.V. Svistunov, Phys. Rev. Lett. 87, 120402 (2001).

P. Arnold and G. Moore, Phys. Rev. Lett. 87, 120401 (2001).

B. Kastening, Phys. Rev. A 69, 043613 (2004).



How to Cite

Pastukhov В. (2012). Calculation of Critical Temperature for a Bose Gas with Long-Range Forces. Ukrainian Journal of Physics, 57(1), 52.



Soft matter