Size and Temperature Dependence of the Surface Plasmon Resonance in Silver Nanoparticles

Authors

  • O.A. Yeshchenko Taras Shevchenko National University of Kyiv, Faculty of Physics
  • I.M. Dmitruk Taras Shevchenko National University of Kyiv, Faculty of Physics
  • A.A. Alexeenko Sukhoi State Technical University of Gomel
  • A.V. Kotko I.M. Frantsevich Institute for Problems of Materials Science, Nat. Acad. of Sci. of Ukraine
  • J. Verdal University of Colorado at Colorado Springs
  • A.O. Pinchuk University of Colorado at Colorado Springs

DOI:

https://doi.org/10.15407/ujpe57.2.266

Keywords:

-

Abstract

The size and temperature dependences of the surface plasmon energy are studied for silver nanoparticles embedded in a silica host matrix in the size range 11–30 nm and in the temperature interval 293–650 K. It is revealed that the surface plasmon energy in studied silver nanoparticles depends on the size and the temperature of nanoparticles. As the size of nanoparticles decreases or the temperature increases, the surface plasmon resonance shifts to the red side.
When the size of nanoparticles decreases, the rate of scattering of the conduction electrons on the nanoparticle surface increases, which results in a nonlinear red shift of the surface plasmon resonance. The temperature dependence of the red shift is linear for larger nanoparticles and becomes nonlinear for smaller ones. It is shown that the volume thermal expansion of nanoparticles leads to a red shift of the surface plasmon resonance, as the temperature increases. It is revealed that the thermal volume expansion coefficient depends on the size and the temperature. It increases with decrease of the nanoparticle size and with increase of the temperature.

References

A. Barhoumi, D. Zhang, F. Tam, and N. Halas, J. of the Amer. Chem. Soc. 130, 5523 (2008).

https://doi.org/10.1021/ja800023j

F. Le, D. Brandl, Y. Urzhumov, H. Wang, J. Kundu, N. Halas, J. Aizpurua, and P. Nordlander, ACS Nano 2, 707 (2008).

https://doi.org/10.1021/nn800047e

G. Laurent, N. Felidj, J. Grand, J. Aubard, G. Levi, A. Hohenau, J. Krenn, and F. Aussenegg, J. of Macrosc..-Oxford 229, 189 (2008).

https://doi.org/10.1111/j.1365-2818.2008.01885.x

R. Bakker, H. Yuan, Z. Liu, V. Drachev, A. Kildishev, V. Shalaev, R. Pedersen, S. Gresillon, and A. Boltasseva, Appl. Phys. Lett. 92, 043101 (2008).

https://doi.org/10.1063/1.2836271

G. Gay, B. de Lesegno, R. Mathevet, J. Weiner, H. Lezec, and T. Ebbesen, Appl. Phys. B 81, 871 (2005).

https://doi.org/10.1007/s00340-005-2016-x

O.A. Yeshchenko, I.M. Dmitruk, A.A. Alexeenko, M.Yu. Losytskyy, A.V. Kotko, and A.O. Pinchuk, Phys. Rev. B 79, 235438 (2009).

https://doi.org/10.1103/PhysRevB.79.235438

A. Gobin, M. Lee, R. Drezek, N. Halas, and J. West, Clin. Cancer Res. 11, 9095S (2005).

C. Hubert, A. Rumyantseva, G. Lerondel, J. Grand, S. Kostcheev, L. Billot, A. Vial, R. Bachelot, and P. Royer, Nano Letters 5, 615 (2005).

https://doi.org/10.1021/nl047956i

K. Kandere-Grzybowska, C. Campbell, Y. Komarova, B. Grzybowski, and G. Borisy, Nature Meth. 2, 739 (2005).

https://doi.org/10.1038/nmeth796

M. Choi, K.J. Stanton-Maxey, J.K. Stanley, C.S. Levin, R. Bardhan, D. Akin, S. Badve, J. Sturgis, J.P. Robinson, R. Bashir, N.J. Halas, and S.E. Clare, Nano Letters 7, 3759 (2007).

https://doi.org/10.1021/nl072209h

L. Hirsch, A. Gobin, A. Lowery, F. Tam, R. Drezek, N. Halas, and J. West, Ann. of Biomed. Eng. 34, 15 (2006).

https://doi.org/10.1007/s10439-005-9001-8

D. O'Neal, L. Hirsch, N. Halas, J. Payne, and J. West, Cancer Lett. 209, 171 (2004).

https://doi.org/10.1016/j.canlet.2004.02.004

D. Citrin, Nano Letters 5, 985 (2005).

https://doi.org/10.1021/nl050513+

J. Jung, T. Sondergaard, and S. Bozhevolnyi, Phys. Rev. B 76, 035434 (2007).

https://doi.org/10.1103/PhysRevB.76.035434

K. Leosson, T. Nikolajsen, A. Boltasseva, and S. Bozhevolnyi, Optics Exp. 14, 314 (2006).

https://doi.org/10.1364/OPEX.14.000314

B. Steinberger, A. Hohenau, H. Ditlbacher, A. Stepanov, A. Drezet, F. Aussenegg, A. Leitner, and J. Krenn, Appl. Phys. Lett. 88, 094104 (2006).

https://doi.org/10.1063/1.2180448

J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, Opt. Lett. 22, 475 (1997).

https://doi.org/10.1364/OL.22.000475

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, Berlin, 1995).

https://doi.org/10.1007/978-3-662-09109-8

A. Pinchuk and U. Kreibig, New J. of Phys. 5, 151 (2003).

https://doi.org/10.1088/1367-2630/5/1/151

C. Aikens and G. Schatz, J. of Phys. Chem. A 110, 13317 (2006).

https://doi.org/10.1021/jp065206m

M. Achermann, K. Shuford, G. Schatz, D. Dahanayaka, L. Bumm, and V. Klimov, Opt. Lett. 32, 2254 (2007).

https://doi.org/10.1364/OL.32.002254

C. Hendrich, J. Bosbach, F. Stietz, F. Hubenthal, T. Vartanyan, and F. Trager, Appl. Phys. B 76, 869 (2003).

https://doi.org/10.1007/s00340-003-1168-9

A. Pinchuk, U. Kreibig, and A. Hilger, Surf. Sci. 557, 269 (2004).

https://doi.org/10.1016/j.susc.2004.03.056

A. Pinchuk, G. Von Plessen, and U. Kreibig, J. of Phys. D 37, 3133 (2004).

https://doi.org/10.1088/0022-3727/37/22/012

C. Dahmen, B. Schmidt, and G. von Plessen, Nano Letters 7, 318 (2007).

https://doi.org/10.1021/nl062377u

L.G. Grechko, A.Y. Blank, O.A. Panchenko, and A.A. Pinchuk, Telecomm. and Radio Eng. 51, 160 (1997).

https://doi.org/10.1615/TelecomRadEng.v51.i2-3.150

C. Novo, D. Gomez, J. Perez-Juste, Z.Y. Zhang, H. Petrova, M. Reismann, P. Mulvaney, and G.V. Hartland, Phys. Chem. Chem. Phys. 8, 3540 (2006).

https://doi.org/10.1039/b604856k

U. Kreibig and L. Genzel, Surf. Sci. 156, 678 (1985).

https://doi.org/10.1016/0039-6028(85)90239-0

U. Kreibig and P. Zacharias, Zeit. für Phys. 231, 128 (1970).

https://doi.org/10.1007/BF01392504

U. Kreibig, Appl. Phys. B 93, 79 (2008).

https://doi.org/10.1007/s00340-008-3213-1

W.A. Challener, C. Peng, A.V. Itagi, D. Karns, W. Peng, Y. Peng, X.M. Yang, X. Zhu, N.J. Gokemeijer, Y.-T. Hsia, G. Ju, R.E. Rottmayer, M.A. Seigler, and E.C. Gage, Nature Photonics 3, 303 (2009).

https://doi.org/10.1038/nphoton.2009.71

L.R. Hirsch, R.J. Stafford, J.A. Bankson, S.R. Sershen, B. Rivera, R.E. Price, J.D. Hazle, N.J. Halas, and J.L. West, Proceed. of the NAS of the USA 100, 13549 (2003).

https://doi.org/10.1073/pnas.2232479100

A. Lowery, A. Gobin, E. Day, N. Halas, and J. West, Breast Cancer Res. and Treat. 100, S289 (2006).

A. Lowery, A. Gobin, E. Day, N. Halas, and J. West, Int. J. of Nanomedic. 1, 149 (2006).

https://doi.org/10.2147/nano.2006.1.2.149

L. Cao, D.N. Barsic, A.R. Guichard, and M.L. Brongersma, Nano Letters 7, 3523 (2007).

https://doi.org/10.1021/nl0722370

W. Cai, J.S. White, and M.L. Brongersma, Nano Letters 9, 4403 (2009).

https://doi.org/10.1021/nl902701b

L. G. Grechko, A. O. Pinchuk, and A. Lesjo, Proceed. of SPIE 3890, 149 (1999).

R.H. Doremus, J. of Chem. Phys. 42, 414 (1965).

https://doi.org/10.1063/1.1695709

S. Link and M.A. El-Sayed, J. of Phys. Chem. B 103, 4212 (1999).

https://doi.org/10.1021/jp984796o

O.A. Yeshchenko, I.M. Dmitruk, A.M. Dmytruk, and A.A. Alexeenko, Mater. Sci. and Engin. B 137, 247 (2007).

https://doi.org/10.1016/j.mseb.2006.11.030

V.S. Gurin, A.A. Alexeenko, K.V. Yumashev, R. Prokoshin, S.A. Zolotovskaya, and G.A. Zhavnerko, Mater. Sci. and Engin. C 23, 1063 (2003).

https://doi.org/10.1016/j.msec.2003.09.073

O.A. Yeshchenko, I.M. Dmitruk, A.A. Alexeenko, and A.M. Dmytruk, Phys. Rev. B 75, 085434 (2007).

https://doi.org/10.1103/PhysRevB.75.085434

A. Pinchuk, A. Hilger, G. Von Plessen, and U. Kreibig, Nanotechn. 15, 1890 (2004).

https://doi.org/10.1088/0957-4484/15/12/036

O.A. Yeshchenko, I.M. Dmitruk, A.A. Alexeenko, and A.V. Kotko, Nanotechn. 21, 045203 (2010).

https://doi.org/10.1088/0957-4484/21/4/045203

C.F. Bohren and D.R. Huffman, Absorption and Scattering of Light by Small Particle (Wiley, New York, 1998).

https://doi.org/10.1002/9783527618156

G. Weick, G.L. Ingold, R.A. Jalabert, and D. Weinmann, Phys. Rev. B 74, 165421 (2006).

https://doi.org/10.1103/PhysRevB.74.165421

Z. Li-Jun, G. Jian-Gang, and Z. Ya-Pu, Chin. Phys. Lett. 26, 066201 (2009).

https://doi.org/10.1088/0256-307X/26/6/066201

B. Grzybowski, X. Jiang, H. Stone, and G. Whitesides, Phys. Rev. E 64, 011603 (2001).

https://doi.org/10.1103/PhysRevE.64.011603

J.H. Wray and J.T. Neu, J. of Opt. Soc. Amer. 59, 774 (1969).

https://doi.org/10.1364/JOSA.59.000774

C. Kittel, Introduction to Solid State Physics (Wiley, New York, 2005).

R.H. Bube, Electrons in Solids: An Introductory Survey (Academic Press, London, 1992).

M. Rashidi-Huyeh and B. Palpant, Phys. Rev. B 74, 075405 (2006).

https://doi.org/10.1103/PhysRevB.74.075405

Y.H. Zhao and K. Lu, Phys. Rev. B 56, 14330 (1997).

https://doi.org/10.1103/PhysRevB.56.14330

Y. Kuru, M. Wohlschlogel, U. Welzel, and E. J. Mittemeijer, Appl. Phys. Lett. 90, 243113 (2007).

https://doi.org/10.1063/1.2748332

M. Dubiel, S. Brunsch, and L. Troger, J. of Phys.: Cond. Matt. 12, 4775 (2000).

https://doi.org/10.1088/0953-8984/12/22/310

W.L. Fang and C.Y. Lo, Sens. Actuat. A 84, 310 (2000).

https://doi.org/10.1016/S0924-4247(00)00311-3

M. Wagner, Phys. Rev. B 45, 635 (1992).

https://doi.org/10.1103/PhysRevB.45.635

C.C. Yang, M.X. Xiao, W. Li, and Q. Jiang, Solid State Comm. 139, 148 (2006).

https://doi.org/10.1016/j.ssc.2006.05.035

S. Pathak and V.B. Shenoy, Phys. Rev. B 72, 113404 (2005).

https://doi.org/10.1103/PhysRevB.72.113404

W.H. Li, S.Y. Wu, C.C. Yang, S.K. Lai, K.C. Lee, H.L. Huang, and H.D. Yang, Phys. Rev. Lett. 89, 135504 (2002).

R.C. Lincoln, K.M. Koliwad, P.B. Ghate, Phys. Rev. 157, 463 (1967).

https://doi.org/10.1103/PhysRev.157.463

Downloads

Published

2012-02-15

How to Cite

Yeshchenko, O., Dmitruk, I., Alexeenko, A., Kotko, A., Verdal, J., & Pinchuk, A. (2012). Size and Temperature Dependence of the Surface Plasmon Resonance in Silver Nanoparticles. Ukrainian Journal of Physics, 57(2), 266. https://doi.org/10.15407/ujpe57.2.266

Issue

Section

Atoms and molecules