Characterization of Nanodispersed Graphite

Authors

  • Yu.S. Perets Taras Shevchenko National University of Kyiv, Faculty of Physics
  • I.V. Ovsienko Taras Shevchenko National University of Kyiv, Faculty of Physics
  • L.L. Vovchenko Taras Shevchenko National University of Kyiv, Faculty of Physics
  • L.Yu. Matzui Taras Shevchenko National University of Kyiv, Faculty of Physics
  • O.A. Brusilovetz Taras Shevchenko National University of Kyiv, Faculty of Chemistry
  • I.P. Pundyk Taras Shevchenko National University of Kyiv, Faculty of Chemistry

DOI:

https://doi.org/10.15407/ujpe57.2.219

Keywords:

-

Abstract

The work is devoted to the questions of interrelations between methods of functionalization and to the distribution character of functional groups on the surface of nanographite plates. The functionalization of initial thermoexfoliated graphite (TEG) is carried out with the use of inorganic reagents such as KMnO4 solutions in the sulfuric acid or a mixture of sulfuric and nitric acids and during different times of first and re-dispersion in a magnetic stirrer. The quantitative and qualitative compositions of functional groups on the surface of nanographite plates are determined by infrared spectroscopy method. As it is revealed from the detailed studies of a structure of functionalized graphite, the functionalization results in the destruction of the initial TEG structure and a reduction of the size of TEG particles down to several nanometers.

References

M.S.P. Shaffer, X. Fan, and A.H. Windle, Carbon 36, 1603 (1998).

https://doi.org/10.1016/S0008-6223(98)00130-4

J. Yun, J. S. Im, Y.-S. Lee, and H.-I. Kim, Eur. Polym. J. 46, 900 (2010).

https://doi.org/10.1016/j.eurpolymj.2010.02.005

Q. Li, Q.Z. Xue, X.L. Gao, and Q.B. Zheng, Polym. Lett. 3, 769 (2009).

https://doi.org/10.3144/expresspolymlett.2009.95

W. Shuguang, L. Yanhui, G. Xiaoyan, Z. Huazhang, L. Zhaokun, X. Cailu, and W. Dehai, Chin. Sci. Bull. 48, 441 (2003).

L. Moiseeva, S. Kireev, and A. Evseev, Nanoindustry 16 (2008) (in Russian).

R. Andrews and M.C. Weisenberger, Solid State and Mat. Sci. 8, 31 (2004).

https://doi.org/10.1016/j.cossms.2003.10.006

S.H. Jeong, J-H Ko, J.-P. Park, and W. Park, J. Amer. Chem. Soc. 126, 15982 (2004).

https://doi.org/10.1021/ja0451867

M. Olek, Carbon Nanotube Composites - Mechanical, Electrical and Optical Properties, Dissertation, (Rheinischen Friedrich-Wilhelms-Universitat Bonn, Bonn, 2006),

http://hss.ulb.uni-bonn.de/dissonline elektronisch publiziert.

D.A. Usanov, A.V. Skripal, and A.V. Romanov, Techn. Phys. 81 (1), 106 (2011) (in Russian).

A. Bassil, P. Puech, G. Landa, W. Bacsa et al., J. of Appl. Phys. 97, 034303 (2005).

https://doi.org/10.1063/1.1846136

Q. Li, M. Zaiser, and V. Koutsos, Phys. Stat. Sol. (a) 201 (13), 89 (2004).

https://doi.org/10.1002/pssa.200409065

V.A. Krutikov, A.A. Didik, G.I. Yakovlev et al., ISJAEE No. 4, 36 (2005) (in Russian).

X. Xu, M.M. Thwe, C. Shearwood, and K. Liao, Appl. Phys. Lett. 81, No. 15, 2833 (2002).

https://doi.org/10.1063/1.1511532

Downloads

Published

2012-02-15

How to Cite

Perets, Y., Ovsienko, I., Vovchenko, L., Matzui, L., Brusilovetz, O., & Pundyk, I. (2012). Characterization of Nanodispersed Graphite. Ukrainian Journal of Physics, 57(2), 219. https://doi.org/10.15407/ujpe57.2.219

Issue

Section

Atoms and molecules

Most read articles by the same author(s)