Effect of Two Different Electron Temperatures in Auroral Ionosphere

Authors

  • S. Nasrin Department of Physics, Jadavpur University
  • M. Bose Department of Physics, Jadavpur University

DOI:

https://doi.org/10.15407/ujpe67.2.136

Keywords:

auroral plasma, electron temperature, electron-acoustic wave, lower-hybrid wave

Abstract

We have investigated the effect of two different electron temperatures in an auroral ionosphere in the presence of ions and obtained a modified electron-acoustic and modified lower-hybrid drift dissipative modes which will not be affected much due to the presence of cold electrons. However, in the drift dissipative case, the growth rate of the electron-acoustic wave depends on the number density of cold electrons.

References

R.L. Lysak, Y. Song. Kinetic theory of the Alfven wave acceleration of auroral electrons. J. Geophys. Res.: Space Phys. 108 (A4), (2003).

https://doi.org/10.1029/2002JA009406

N.P. Abraham, S. George, G. Sreekala, S. Sebastian, C. Venugopal, G. Renuka. Stability of electrostatic electron cyclotron waves in a multi-ion plasma. Earth, Moon, and Planets 111, 115 (2014).

https://doi.org/10.1007/s11038-014-9429-7

W.D. Jones, A. Lee, S.M. Gleman, H.J. Doucet. Propagation of ion-acoustic waves in a two-electron-temperature plasma. Phys. Rev. Lett. 35 (20), 1349 (1975).

https://doi.org/10.1103/PhysRevLett.35.1349

M.Y. Yu, P.K. Shukla. Linear and nonlinear modified electron-acoustic waves. J. Plasma Phys. 29 (3), 409 (1983).

https://doi.org/10.1017/S0022377800000866

A.J. Lichtenberg, H. Meuth. Hot-electron instability in mirror geometry. The Physics of Fluids 29 (11), 3511 (1986).

https://doi.org/10.1063/1.865827

Y. Nishida, T. Nagasawa. Excitation of ion-acoustic rarefactive solitons in a two-electron temperature plasma. The Physics of Fluids 29 (2), 345 (1986).

https://doi.org/10.1063/1.865717

M. Bose, S. Guha. Electron acoustic and lower hybrid drift dissipative instabilities in a multi-ion species plasma. Phys. Scri. 34 (1), 63 (1986).

https://doi.org/10.1088/0031-8949/34/1/011

S.V. Singh, R.V. Reddy, G.S. Lakhina. Modulational Instability of Electron-Acoustic Waves in the Auroral Region (ILWS Workshop, 2006).

P.H. Sakanaka, da Trindade Faria Jr. Evolution of electron-acoustic wave in auroral region. In: AIP Conference Proceedings 669 (1), 520 (2003).

https://doi.org/10.1063/1.1593981

W. Wang, A.G. Burns, T.L. Killeen. A numerical study of the response of ionospheric electron temperature to geomagnetic activity. J. Geophys. Res.: Space Phys. 111, A11301 (2006).

https://doi.org/10.1029/2006JA011698

J. Vranjes, S. Poedts. Features of ion acoustic waves in collisional plasmas. Phys. of Plasmas 17 (2), 022104 (2010).

https://doi.org/10.1063/1.3309490

P. Bala, T.S. Gill. Multimode excitation and modulational instability of beam plasma system with Tsallis-distributed electrons. Pramana 95 (2), 1 (2021).

https://doi.org/10.1007/s12043-021-02080-6

V.I. Arefev, B.A. Khmelinin. Heating of ions in heavy-current arcs stabilized by a magnetic field. Teplofizika vysokikh temperatur 8 (5), 1091 (1970).

P. Janhunen, A. Olsson. A hybrid simulation model for a stable auroral arc. Annales Geophysicae 20 (10), 1603 (2002).

https://doi.org/10.5194/angeo-20-1603-2002

M. Mohan, M.Y. Yu. Drift dissipative instabilities of electron-acoustic and lower-hybrid waves. J. Plasma Phys. 29 (1), 127 (1983).

https://doi.org/10.1017/S0022377800000611

J.E. Willett, Y. Aktas. Drift dissipative instabilities between the electron and ion cyclotron frequencies. J. Appl. Phys. 59 (8), 2985 (1986).

https://doi.org/10.1063/1.336915

Downloads

Published

2022-04-01

How to Cite

Nasrin, S., & Bose, M. (2022). Effect of Two Different Electron Temperatures in Auroral Ionosphere. Ukrainian Journal of Physics, 67(2), 136. https://doi.org/10.15407/ujpe67.2.136

Issue

Section

Plasma physics