Mirror Symmetry as an Algebra of Operators in Noncommutative Geometry of Space-Time

Authors

  • Yu.V. Khoroshkov 4, Ivana Svitlychnogo Str., apt. 40, Kyiv 03087, Ukraine

DOI:

https://doi.org/10.15407/ujpe67.2.117

Keywords:

mirror symmetry, noncommutative geometry, Clifford algebra, correlation

Abstract

The analysis of the geometric and algebraic properties of mirror mappings allowed the latter to be used as the operator algebra of a noncommutative geometry. The coordinates of the noncommutative geometry are auto- or cross-correlation coordinates in the mirror-mapped spaces. A particular case of the six-dimensional Kahler manifold which is mapped on the noncommutative geometry with the vector Clifford algebra Cl4 has been considered. This mapping corresponds to a tetraquark composed from two quark–anti-quark pairs with the charges ±2/3q taken from different generations.

References

H. Schwarz, E. Witten. Superstring Theory. Vol. 1. Introduction (Cambridge University Press, 1988).

M.B. Green, J.H. Schwarz, E. Witten. Superstring Theory. Vol. 2. Loop Amplitudes, Anomalies and Phenomenology (Cambridge University Press, 1988).

https://doi.org/10.1063/1.2820272

K. Hori, Sh. Katz, A. Klemm, R. Pandharipande, R. Thomas, C. Vafa, R. Vakil, E. Zaslow. Mirror Symmetry. Vol. 1 (American Mathematical Society, 2003).

A. Connes, M. Marcolli. Noncommutative Geometry, Quantum Fields and Motives (American Mathematical Society, 2007).

https://doi.org/10.1090/coll/055

B. Greene. The Elegant Universe: Superstrings, Hidden Dimensions, and the Quest for the Ultimate Theory (W.W. Norton and Co., 2010).

A. Strominger, Shing-Tung Yau, E. Zaslow. Mirror symmetry is T-duality. arXiv: hep-th/9606040v2.

Yu.V. Khoroshkov. Mirror symmetry as a basis for constructing a space-time continuum. Ukr. J. Phys. 60, 468 (2015).

https://doi.org/10.15407/ujpe60.05.0468

J. Zinn-Justin. Path Integrals in Quantum Mechanics (Oxford University Press, 2005).

https://doi.org/10.1093/acprof:oso/9780198566748.001.0001

Published

2022-04-01

How to Cite

Khoroshkov, Y. (2022). Mirror Symmetry as an Algebra of Operators in Noncommutative Geometry of Space-Time. Ukrainian Journal of Physics, 67(2), 117. https://doi.org/10.15407/ujpe67.2.117

Issue

Section

Fields and elementary particles