Interaction between an Isotropic Nanoparticle and Drifting Electrons in a Quantum Well

Authors

  • V.A. Kochelap V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
  • S.M. Kukhtaruk V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe57.3.367

Keywords:

-

Abstract

A hybrid system composed of an isotropic nanoparticle and a semiconductor heterostructure with a quantum well has been considered. The nanoparticle is supposed to be polarizable in an external electric field. A theoretical model of the hybrid system is substantiated and formulated. Exact solutions of the model equations are obtained. The frequencies of charge oscillations in the hybrid system and their damping owing to the dipole--plasmon interaction are found, the damping mechanism being similar to that of Landau damping. The space-time behavior of concentration perturbations in the two-dimensional electron gas is analyzed, and the polarization oscillations of a nanoparticle are studied. The induced polarization of a nanoparticle at nonzero electron drift velocities is found to have a complicated dynamics. In particular, the polarization vector circulates along elliptic trajectories for two of three frequency
dispersion branches. If the electric current flows through the quantum well due to an applied electric field, the damping of oscillations in the hybrid system is replaced by their growth in time, which corresponds to the electric instability of the system. New phenomena in hybrid systems can be used to excite the emission of nanoparticles by an electric current and to electrically stimulate the emission in the terahertz spectral range.

References

P. Bakshi and K. Kempa, Superlatt. Microstruct. 17, 363 (1995).

https://doi.org/10.1006/spmi.1995.1064

S.A. Mikhailov, Recent Res. Devel. Appl. Phys. 2, 65 (1999).

B.Y.K. Hu and J.W. Wilkins, Phys. Rev. B 41, 10706 (1990).

https://doi.org/10.1103/PhysRevB.41.10706

Z.S. Gribnikov, N.Z. Vagidov, and V.V. Mitin, J. Appl. Phys. 88, 6736 (2000).

https://doi.org/10.1063/1.1322383

K. Kempa, P. Bakshi, and E. Gornik, Phys. Rev. B 54, 8231 (1996).

https://doi.org/10.1103/PhysRevB.54.8231

M. Dyakonov and M.S. Shur, Phys. Rev. Lett. 71, 2465 (1993)

https://doi.org/10.1103/PhysRevLett.71.2465

Appl. Phys. Lett. 87, 111501 (2005).

https://doi.org/10.1063/1.2042547

W. Knap, J. Lusakowski, T. Parenty, S. Bollaert, A. Cappy, V.V. Popov, and M.S. Shur, Appl. Phys. Lett. 84, 2331 (2004).

https://doi.org/10.1063/1.1689401

J. Lusakowski, W. Knap, N. Dyakonova, L. Varani, J. Mateos, T. Gonzalez, Y. Roelens, S. Bollaert, and A. Cappy, J. Appl. Phys. 97, 064307 (2005); N. Dyakonova, A. El Fatimy, J. Lusakowski, W. Knap, M.I. Dyakonov, M.-A. Poisson, E. Morvan, S. Bollaert, A. Shchepetov, Y. Roelens, Ch. Gaquiere, D. Theron, and A. Cappy, Appl. Phys. Lett.

https://doi.org/10.1063/1.1861140

, 141906 (2006).

T. Otsuji, Y.M. Meziani, T. Nishimura, T. Suemitsu, W. Knap, E. Sano, T. Asano and V.V. Popov, J. Phys.: Condens. Matter 20, 384206 (2008).

https://doi.org/10.1088/0953-8984/20/38/384206

T. Demel, D. Heitman et al., Phys. Rev. Lett. 64, 788 (1990).

https://doi.org/10.1103/PhysRevLett.64.788

Ch. Sikorski and U. Merkt, Phys. Rev. Lett. 62, 2164 (1989)

https://doi.org/10.1103/PhysRevLett.62.2164

B. Meurer, D. Heitmann, and K. Ploog, Phys. Rev. Lett. 68, 1371 (1992)

https://doi.org/10.1103/PhysRevLett.68.1371

D. Heitmann and J.P. Kotthaus, Phys. Today, 48, 56 (1993).

https://doi.org/10.1063/1.881355

S.M. Reimann and M. Manninen, Rev. Mod. Phys. 74, 1283 (2002).

https://doi.org/10.1103/RevModPhys.74.1283

C.P. Garcia, S. Kalliakos, V. Pellegrini, A. Pinczuk, B.S. Dennis, L.N. Pfeiffer, and K.W. West, Appl. Phys. Lett. 88, 113105 (2006).

https://doi.org/10.1063/1.2185447

B. Yu, F. Zeng et al., Biophys. J. 86, 1649 (2004).

https://doi.org/10.1016/S0006-3495(04)74233-2

V.N. Maistrenko, S.V. Sapernikova et al., J. Analyt. Chem. 55, 586 (2000).

https://doi.org/10.1007/BF02757819

R. Balu, H. Zhang et al., Biophys. J. 94, 3217 (2008).

https://doi.org/10.1529/biophysj.107.105163

J. Burghoon, T.O. Klaassen, and W.T. Wenchebach, Semicond. Sci. Technol. 9, 30 (1994).

https://doi.org/10.1088/0268-1242/9/1/006

A.J. Kalkman, H.P.M. Pellemans, T.O. Klaassen, and W.T. Wencheback, Int. J. Infrared Millim. Waves 17, 569 (1996).

https://doi.org/10.1007/BF02088030

D.G. Allen, M.S. Sherwin, and C.R. Stanley, Phys. Rev. B 72, 035302 (2005).

https://doi.org/10.1103/PhysRevB.72.035302

S.M. Kukhtaruk, Ukr. J. Phys. 55, 8, 916 (2010).

A.S. Davydov, Quantum Mechanics (Pergamon Press, New York, 1976).

E.M. Lifshitz and L.P. Pitaevskii, Physical Kinetics (Pergamon Press, New York, 1981).

V.V. Mitin, V.A. Kochelap, and M.A. Stroscio, Quantum Heterostructures (Cambridge Univ. Press, New York, 1999).

F. Kuchar, G. Bauer, and H. Hillbrand, Phys. Status Solidi A 17, 491 (1973).

https://doi.org/10.1002/pssa.2210170213

A. Krotkus and Z. Dobrovolskis, Electrical Conductivity of Narrow-Gap Semiconductors (Mokslas, Vilnius, 1988) (in Russian).

W.T. Masselink, Semicond. Sci. Technol. 4, 503 (1989).

https://doi.org/10.1088/0268-1242/4/7/001

L.D. Landau and E.M. Lifshitz, The Classical Theory of Fields (Pergamon Press, Oxford, 1983).

M.A. Nielsen and I.L. Chuang, Quantum Computation and Quantum Information (Cambridge Univ. Press, Cambridge, 2000).

Published

2012-03-30

How to Cite

Kochelap В., & Kukhtaruk С. (2012). Interaction between an Isotropic Nanoparticle and Drifting Electrons in a Quantum Well. Ukrainian Journal of Physics, 57(3), 367. https://doi.org/10.15407/ujpe57.3.367

Issue

Section

Nanosystems