Enhancement Features of Infra-Red Absorption by α-Gly Molecules in the SEIRA Effect

Authors

  • O.M. Fesenko Institute of Physics, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe57.3.296

Keywords:

-

Abstract

Molecules of α-Gly are used as an example to demonstrate that the surface enhanced infrared absorption (SEIRA) effect is different for different molecular groups, with the enhancement being maximal for charged groups and groups with an unshared electron pair. The enhancement factor of IR absorption for multilayered films of α-Gly molecules deposited onto a gold substrate decreases, as the number of molecular layers increases, and can become 2 to 7 times lower for various molecular groups. It can be made 3 to 12 times higher for films obtained by the thermal sputtering of α-Gly molecules in vacuum onto a gold surface in comparison with the films deposited from an aqueous solution. If α-Gly and gold are sputtered simultaneously, a better resolution of the IR
absorption bands of glycine is observed. It is shown that a decrease of the solution pH index to 2 gives rise to an increase of the enhancement factor of IR absorption by α-Gly by an order of magnitude, which allowed us to register overtones in thin films of glycine (250–275 nm in thickness).

References

A. Hartstein, J.R. Kirtley, and J.C. Tsang, Phys. Rev. Lett. 45, 201 (1980).

https://doi.org/10.1103/PhysRevLett.45.201

M. Osawa and M. Ikeda, J. Phys. Chem. Lett. 95, 9914 (1991).

https://doi.org/10.1021/j100177a056

M. Osawa, in Handbook of Vibrational Spectroscopy, edited by J.M. Chalmers and P.R. Griffiths (Wiley, Chichester, 2002), p. 785.

V.A. Kosobukin, Izv. AN SSSR, Ser. Fiz. 49, 1111 (1985).

A.A. Borshch, M.S. Brodin, V. Volkov, V.R. Lyakhovetskii, and R.D. Fedorovich, Pis'ma Zh. Eksp. Teor. Fiz. 84, 248 (2006).

https://doi.org/10.1134/S0021364006160107

M. Moskovits, Rev. Mod. Phys. 57, 783 (1985).

https://doi.org/10.1103/RevModPhys.57.783

K. Kneipp, M. Moskovits, and H. Kneipp, Surface-Enhanced Raman Scattering: Physics and Applications (Springer, New York, 2006).

https://doi.org/10.1007/3-540-33567-6

R.A. Tripp, R.A. Dluhy, and Yi Zhao, Nano Today 3, 31 (2008).

https://doi.org/10.1016/S1748-0132(08)70042-2

P.W. Li, J. Zhang, L. Zhang, and Y.J. Mo, Vibrat. Spectrosc. 49, 2 (2009).

https://doi.org/10.1016/j.vibspec.2007.04.001

K. Ataka and J. Heberle, Biochem. Soc. Trans. 36, 986 (2008).

https://doi.org/10.1042/BST0360986

O.M. Fesenko, Sensor Electron. Microsys. Technol. 2, No. 2, 19 (2011).

A. Fasasi, P.R. Griffiths, and L. Scudiero, Appl. Spectrosc 65, 750 (2011).

https://doi.org/10.1366/11-06274

M. Osawa and K. Ataka, Surf. Sci. Lett. 262, L118 (1992).

https://doi.org/10.1016/0039-6028(92)90119-Q

T.R. Jensen, R.P. Duyne, S.A. Johnson, and V.A. Maroni, Appl. Spectrosc. Lett. 54, 371 (2000).

https://doi.org/10.1366/0003702001949654

Y. Nakao and H. Yamada, J. Electron Spectrosc. Relat. Phenom. Lett. 45, 113 (1987).

https://doi.org/10.1016/0368-2048(87)80059-2

T. Watayama, T. Sakurai, S. Ichikawa, and W. Suetaka, Surf. Sci. Lett. 198, 359 (1988).

M. Osawa, K. Ataka, K. Yoshii, and N. Nishikawa, Appl. Spectrosc. Lett. 47, 1497 (1993).

https://doi.org/10.1366/0003702934067478

G.D. Chumanov, R.G. Efremov, and I.R. Nabiev, J. Raman Spectrosc. Lett. 21, 43 (1990).

https://doi.org/10.1002/jrs.1250210109

V.A. Kosobukin, Poverkhnost Fiz. Khim. Mekhan. 12, 5 (1983).

V.A. Kosobukin, Izv. AN SSSR, Ser. Fiz. 48, 1281 (1984).

Surface Enhanced Raman Scattering, edited by R.K. Chang and T.E. Furtake (Plenum, New York, 1982).

V.I. Emelyanov and N.I. Koroteev, Usp. Fiz. Nauk 135, 345 (1981).

https://doi.org/10.3367/UFNr.0135.198110h.0345

M. Moskovits, J. Raman Spectrosc. Lett. 36, 485 (2005).

https://doi.org/10.1002/jrs.1362

M. Gadenne, V. Podolskiy, P. Gadenne, P. Sheng, and V.M. Shalaev, Europhys. Lett. 53, 364 (2001).

https://doi.org/10.1209/epl/i2001-00162-1

I.R. Nabiev, G.G. Efremov, and G.D. Chumanov, Usp. Fiz. Nauk 154, 459 (1989).

https://doi.org/10.3367/UFNr.0154.198803d.0459

C. Pettenkofer and A. Otto, Europhys. Lett. 65, 692 (2004).

https://doi.org/10.1209/epl/i2003-10161-8

A. Otto, I. Mrozek, H. Grabhorn, and W.Akemann, J. Phys.: Condens. Matter. 4, 1143 (1992).

https://doi.org/10.1088/0953-8984/4/5/001

S.L. McCall and P.M. Platzman, Phys. Rev. B 22, 1660 (1980).

https://doi.org/10.1103/PhysRevB.22.1660

G.I. Dovbeshko, Yu.M. Shirshov, V.I. Chegel, and O.M. Fesenko, SPIE 5507, 309 (2004).

G.I. Dovbeshko, O.P. Paschuk, O.M. Fesenko, V.I. Chegel, Yu.M. Shirshov, A.A. Nazarova, and D.V. Kosenkov, in Frontiers of Multifunctional Integrated Nanosystems, edited by E. Buzaneva and P. Scharff (Kluwer, Dordrecht, 2004), p. 447.

G. Dovbeshko, O. Fesenko, V. Chegel, Yu. Shirshov, D. Kosenkov, and A. Nazarova, Asian Chem. Lett. 10, 33 (2006).

G.I. Dovbeshko, L.Y. Berezhinskyi, I.V. Sekyrin, and O.M. Pashchuk, Ukr. Fiz. Zh. 46, 541 (2001).

P.G. Jonsson and O. Kvick, Acta Crystallogr. B 28, 1827 (1972).

https://doi.org/10.1107/S0567740872005096

O.M. Fesenko and S.O. Yesylevskyy, in Proc. of 4-th Sensors electronics and microsystems technology (SEMCT-4) (Mechnikov National university, Odessa, 2010), p. 175.

O.M. Fesenko, G.I. Dovbeshko, and S.O. Yesylevskyy, in Proceedings of the 4-th Russian-Ukrainian-Polish Conference on Molecular Interactions (Gdansk University, Jastarnia, 2009), p. 89.

E.S. Kryachko and F. Remacle, Nano Lett. 5, 735 (2005).

https://doi.org/10.1021/nl050194m

E.S. Kryachko and F. Remacle, Chem. Phys. Lett. 404, 142 (2005).

https://doi.org/10.1016/j.cplett.2005.01.061

Published

2012-03-30

How to Cite

Fesenko О. (2012). Enhancement Features of Infra-Red Absorption by α-Gly Molecules in the SEIRA Effect. Ukrainian Journal of Physics, 57(3), 296. https://doi.org/10.15407/ujpe57.3.296

Issue

Section

Atoms and molecules

Most read articles by the same author(s)