Dependences of the Interatomic Quasielastic Force Coefficient and the Root-Mean-Square Amplitude of Thermal Vibrations of Atoms on the Configuration of Valence Electrons

Authors

  • I. Khidirov Institute of Nuclear Physics, Uzbekistan Academy of Sciences
  • S.Dzh. Rakhmanov Institute of Nuclear Physics, Uzbekistan Academy of Sciences
  • A.S. Parpiev Institute of Nuclear Physics, Uzbekistan Academy of Sciences
  • Sh.A. Makhmudov Institute of Nuclear Physics, Uzbekistan Academy of Sciences

DOI:

https://doi.org/10.15407/ujpe67.8.561

Keywords:

Mendeleev Periodic Table of elements, s-, d-, and p-elements, configuration of valence electron orbitals, quasielastic force coefficient, root-mean-square (RMS) amplitude of thermal vibrations, Debye temperature, atomic number

Abstract

The interatomic quasielastic force coefficient f and the root-mean-square amplitude of thermal vibrations √︀u2 of atoms in s-, d-, and p-elements located in various groups of Mendeleev’s Periodic Table are calculated. It is found that, with an increase in the atomic number of elements in the groups, the quasielastic force coefficient f and the amplitudes √︀u2 of thermal vibrations of atoms in the s-, d-, and p-elements change according to different patterns depending on the atomic number of the element in a group. The discovered regularities can be explained by the configurational model of the electronic structure of matter.

References

D.M.P. Mingos. The Periodic Table I. Historical Devolopment and Essentifl Features (Springer Nature Switzerland AG, 2019) [ISBN: 978-3-030-40025-5].

D.M.P. Mingos. The Periodic Table II. Catalytic, Materials, Biological and Medical Applications (Springer Nature Switzerland AG, 2019) [ISBN: 978-3-030-40010-1].

https://doi.org/10.1007/978-3-030-40010-1

B. Oksengendler, K. Mukimov, R. Letfullin, N. Turaeva, G. Abdurakhmanov, Sh. Yuldashev. Periodic table of elements, Mendeleev's periodic table: History, achievements and problems. Bull. NUUz: Math. Nat. Sc. 2, 94 (2019).

V.M. Kamishov, E.G. Miroshnikova, V.P. Tataurov. The Structure of Matter (SPb.: Lan, 2017) [ISBN: 978-5-8114-2313-2] (in Russian).

G.V. Samsonov, I.F. Pryadko, L.F. Pryadko. Electronic Localisation in Solids (Nauka, 1976) (in Russian).

T.G. Bystrova, F.I. Fedorov. Dependence of Debye temperature on atomic number. Dokl. AN SSSR. 6, 1333 (1974) (in Russian).

V.V. Novikov. RMS displacements of metal and boron atoms in crystal lattices of rare-earth metal hexabarides. FTT 8, 1469 (2003) (in Russian).

https://doi.org/10.1134/1.1602894

Ch. Kittel. Introduction to Solid State Physics. 8-th edition (Jhon Wiley, 2005) [ISBN: 0-471-41526-X].

X.X. Yang, Z.F. Zhou, Yan Wang, J.W. Li, N.G. Guo, W.T. Zheng, J.Z. Peng, C.Q. Sun. Raman spectroscopic determination of the length, energy, Debye temperature, and compressibility of the C-C bond in carbon allotropes. Chem. Phys. Lett. 575, 86 (2013).

https://doi.org/10.1016/j.cplett.2013.05.008

M.E. Dritsa. Element properties (Metallurgiya, 1985) (in Russian).

V.A. Gurtov, R.H. Osaulenko. Solid State Physics for Engineers (Technosphere, 2012) [ISBN: 978-5-94836-327-1] (in Russian).

V.V. Glazova. Titanium Doping (Metallurgiya, 1966) (in Russian).

V.I. Iverenova, G.P. Revkevich. Theory of X-ray Scattering (MGU, 1972) (in Russian).

M.A. Krivoglaz. X-ray and Neutron Diffraction in Nonideal Crystals (Springer-Verlag, 1996).

https://doi.org/10.1007/978-3-642-74291-0

J.M. Kauly. Physics of Diffraction (Mir, 1979) (in Russian).

Downloads

Published

2022-12-04

How to Cite

Khidirov, I., Rakhmanov, S., Parpiev, A., & Makhmudov, S. (2022). Dependences of the Interatomic Quasielastic Force Coefficient and the Root-Mean-Square Amplitude of Thermal Vibrations of Atoms on the Configuration of Valence Electrons. Ukrainian Journal of Physics, 67(8), 561. https://doi.org/10.15407/ujpe67.8.561

Issue

Section

General physics

Most read articles by the same author(s)