Dynamics of Transient Processes in Irreversible Kinetic Models

Authors

  • V.I. Teslenko Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine
  • O.L. Kapitanchuk Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe57.5.573

Keywords:

-

Abstract

A microscopic model of an open system interacting with an external medium and exhibiting quasiclassical fluctuations of its energy has been developed. The model is used to describe the irreversible process of binding between ligand and receptor molecules in a solution. Analytical expressions for the probabilities of transitions between non-stationary states of the system averaged over both equilibrium vibrations in the medium and stationary states in the system were derived. The explicit dependences of the transition rate constants on the ligand concentration, solution viscosity, and temperature were found for the irreversible model with three kinetic stages.

References

Y. Jia, D.S. Talaga, W.L. Lau, H.S.M. Lu, W.F. DeGrado, and R.M. Hochstrasser, Chem. Phys. 247, 69 (1999).

https://doi.org/10.1016/S0301-0104(99)00127-5

M. Dahan, A.A. Deniz, T. Ha, D.S. Chemla, P.G. Schultz, and S. Weiss, Chem. Phys. 247, 85 (1999).

https://doi.org/10.1016/S0301-0104(99)00132-9

W.E. Moerner, J. Phys. Chem. B 106, 910 (2002).

https://doi.org/10.1021/jp012992g

M. Orrit, Single Mol. 3, 255 (2002).

https://doi.org/10.1002/1438-5171(200211)3:5/6<255::AID-SIMO255>3.0.CO;2-8

H.P. Lu, L. Xun, and X.S. Xie, Science 282, 1877 (1998).

https://doi.org/10.1126/science.282.5395.1877

P.B. English, W. Min, A.M. van Oijen, K.T. Lee, G. Luo, H. Sun, B.J. Cherail, S.C. Kou, and X.S. Xie, Nat. Chem. Biol. 2, 87, (2006).

https://doi.org/10.1038/nchembio759

J.M. Fernandez and H. Li, Science 303, 1674 (2004).

https://doi.org/10.1126/science.1092497

D.J. Muller and Y.F. Dufrene, Nat. Nanotech. 3, 261 (2008).

P.W. Anderson, J. Phys. Soc. Jpn. 9, 888 (1954).

https://doi.org/10.1143/JPSJ.9.888

R. Kubo, J. Phys. Soc. Jpn. 17, 1100 (1962).

https://doi.org/10.1143/JPSJ.17.1100

I. Oppenheim, K.E. Shuler, and G.H. Weiss, Stochastic Processes in Chemical Physics: The Master Equation (MIT Press, Cambridge, MA,

.

E.G. Petrov and V.I. Teslenko, Teor. Mat. Fiz. 84, 446 (1990).

https://doi.org/10.1007/BF01017358

E.G. Petrov and V.I. Teslenko, Ukr. Fiz. Zh. 35, 1106 (1990).

K. Lindenberg and B.J. West, The Nonequilibrium Statistical Mechanics of Open and Closed Systems (VCH, New York, 1990).

V.M. Kenkre and P. Reineker, Exciton Dynamics in Molecular Crystals and Aggregates (Springer, Berlin, 1982).

https://doi.org/10.1007/BFb0041435

N.G. Van Kampen, Stochastic Processes in Physics and Chemistry (North-Holland, Amsterdam, 1984).

U. Weiss, Quantum Dissipative Systems, Series in Modern Condensed Matter Physics, Vol.2 (World Scientific, Singapore, 1993).

https://doi.org/10.1142/1476

E.G. Petrov, V.I. Teslenko, and I.A. Goychuk, Phys. Rev. E 49, 3894 (1994).

https://doi.org/10.1103/PhysRevE.49.3894

E.G. Petrov, I.A. Goychuk, V.I. Teslenko, and V. May, Physics Lett. A 218, 343 (1996).

https://doi.org/10.1016/0375-9601(96)00429-X

E.G. Petrov, Phys. Rev. E 57, 94 (1998).

https://doi.org/10.1103/PhysRevE.57.94

I. Goychuk and P. Hanggi, Adv. Phys. 54, 525 (2005).

https://doi.org/10.1080/00018730500429701

Y. Jung, E. Barkai, and R.J. Silbey, Adv. Chem. Phys. 123, 119 (2002).

Y.R. Chemla, J.R. Moffitt, and C. Bustamante, J. Phys. Chem. B 112, 6025 (2008).

https://doi.org/10.1021/jp076153r

A.I. Burshtein, Adv. Phys. Chem. 2009, 214219 (2009).

https://doi.org/10.1155/2009/214219

J. Cao and R.J. Silbey, J. Phys. Chem. A 113, 13825 (2009).

https://doi.org/10.1021/jp9032589

E.G. Petrov and V.I. Teslenko, Chem. Phys. 375, 243 (2010).

https://doi.org/10.1016/j.chemphys.2010.05.029

V.I. Teslenko, E.G. Petrov, A. Verkhratsky, and O.A. Krishtal, Phys. Rev. Lett. 104, 178105 (2010).

https://doi.org/10.1103/PhysRevLett.104.209901

V.A. Benderskii, E.V. Vetoshkin, and E.I. Kats, Zh. Eksp. Teor. Fiz. 124, 259 (2003).

S. Nakajima, Progr. Theor. Phys. 20, 948 (1958).

https://doi.org/10.1143/PTP.20.948

R. Zwanzig, Physica 30, 1109 (1964).

https://doi.org/10.1016/0031-8914(64)90102-8

S.N. Dorogovtsev, A.V. Goltsev, and J.F.F. Mendes, Rev. Mod. Phys. 80, 1275 (2008).

https://doi.org/10.1103/RevModPhys.80.1275

V.I. Teslenko, Ukr. Fiz. Zh. 34, 1748 (1989).

T.G. Lombardo, F.H. Stillinger, and P.G. Debenedetti, Proc. Nat. Acad. Sci. USA. 106, 15131 (2009).

https://doi.org/10.1073/pnas.0812867106

A. Fersht, Structure and Mechanism in Protein Science: A Guide to Enzyme Catalysis and Protein Folding (Freeman, New York, 1999).

N.M. Goodey and S.J. Benkovic, Nat. Rev. Chem. Biol. 4, 474 (2008).

https://doi.org/10.1038/nchembio.98

B.M. Rodriguez, D. Sigg, and F. Bezanilla, J. Gen. Physiol. 112, 223 (1998).

https://doi.org/10.1085/jgp.112.2.223

M.E. Peterson, R.M. Daniel, M.J. Danson, and R. Eisenthal, Biochem. J. 402, 331 (2007).

https://doi.org/10.1042/BJ20061143

J.F. Gillooly, J.H. Brown, G.B. West, V.M. Savage, and E.L. Charnov, Science 293, 2248 (2001).

https://doi.org/10.1126/science.1061967

V. Khmyz, O. Maximyuk, V. Teslenko, V. Verkhratsky, and O. Krishtal, Pflugers Arch. Eur. J. Physiol. 456, 339 (2008).

https://doi.org/10.1007/s00424-007-0376-2

A. A. Istratov and O. F. Vyvenko, Rev. Sci. Instrum. 70, 1233 (1999). https://doi.org/10.1063/1.1149581

J. Fisher and T. A. Henzinger, Nat. Biotech. 25, 1239 (2007). https://doi.org/10.1038/nbt1356

A. Raue, C. Kreutz, T. Maiwald, J. Bachmann, M. Schilling, U. Klingmuller, and J. Timmer, Bioinformatics 25, 1923 (2009). https://doi.org/10.1093/bioinformatics/btp358

Published

2012-05-30

How to Cite

Teslenko В., & Kapitanchuk О. (2012). Dynamics of Transient Processes in Irreversible Kinetic Models. Ukrainian Journal of Physics, 57(5), 573. https://doi.org/10.15407/ujpe57.5.573

Issue

Section

General problems of theoretical physics

Most read articles by the same author(s)