Free Energy Functional Expansion as the Generalized Approach to the Equation of State of Dense Fluids

Authors

  • V.Yu. Bardik Taras Shevchenko National University of Kyiv, Faculty of Physics
  • D. Nerukh Aston University, Non-linearity and Complexity Research Group
  • E.V. Pavlov Taras Shevchenko National University of Kyiv, Faculty of Physics
  • M.S. Vlasyuk Taras Shevchenko National University of Kyiv, Faculty of Physics

DOI:

https://doi.org/10.15407/ujpe57.6.612

Keywords:

-

Abstract

A version of the thermodynamic perturbation theory based on a scaling transformation of the partition function has been applied to the statistical derivation of the equation of state in a high-pressure region. Two modifications of the equations of state have been obtained on the basis of the free energy functional perturbation series. The comparative analysis of the experimental PVT-data on the isothermal compression for the supercritical fluids of inert gases has been carried out.

References

R. Span, E.W. Lemmon, R.T., W. Jacobsen, and W. Yokozeki, J. Phys. Chem. Ref. Data 29, 1361 (2000).

https://doi.org/10.1063/1.1349047

Ch. Tegeler, R. Span, and W. Wagner, J. Phys. Chem. Ref. Data 28, 779 (1999).

https://doi.org/10.1063/1.556037

L.E. Fried and W.M. Howard, J. Chem. Phys. 109, 7338 (1998).

https://doi.org/10.1063/1.476520

J. Largo and J.R. Solano, Phys. Rev. E 58, 2251 (1998).

https://doi.org/10.1103/PhysRevE.58.2251

S.V. Lishchuk, N.P. Malomuzh, and P.V. Makhlaichuk, Phys. Lett. A 374, 2084 (2010).

https://doi.org/10.1016/j.physleta.2010.02.070

R.W. Zwanzig, J. Chem. Phys. 22, 1420 (1954).

https://doi.org/10.1063/1.1740409

E.B. Smith and B.J. Alder, J. Chem. Phys. 30, 1190 (1959).

https://doi.org/10.1063/1.1730154

H. Frisch, J.L. Katz, E. Praestgaard, and J.L. Lebowitz, J. Phys. Chem. 70, 2016 (1966).

https://doi.org/10.1021/j100878a051

D.A. McQuarrie and J.L. Katz, J. Chem. Phys. 44, 2393 (1966).

https://doi.org/10.1063/1.1727054

J.S. Rowlinson, Mol. Phys. 7, 593 (1964); ibid., 8, 107 (1966).

https://doi.org/10.1080/00268976300101421

J.A. Barker and D. Henderson, J. Chem. Phys. 47, 2856 (1967).

https://doi.org/10.1063/1.1712308

J.A. Barker and D. Henderson, J. Chem. Phys. 47, 4714 (1967).

https://doi.org/10.1063/1.1701689

J.A. Barker and D. Henderson, Rev. Mod. Phys. 48, 587 (1976).

https://doi.org/10.1103/RevModPhys.48.587

N.N. Bogoliubov, Problems of Dynamic Theory in Statistical Physics (Techn. Inform. Service, Oak Ridge, Tenn., 1960).

P.W. Bridgman, Proc. Am. Acad. Arts Sci. 72, 220 (1938).

https://doi.org/10.2307/20023291

J.S. Slater, Introduction to Chemical Physics (McGraw-Hill, New York, 1939).

R.W. Zwanzig, J.G. Kirkwood, K.F. Stripp, and I. Oppenheim, J. Chem. Phys. 21, 1268 (1953).

https://doi.org/10.1063/1.1699179

NIST Database, {http://webbook.nist.gov/chemistry/fluid/.

S. Kambayashi and Y. Hiwatari, Phys. Rev. A 37, 852 (1988).

https://doi.org/10.1103/PhysRevA.37.852

S. Kambayashi and Y. Hiwatari, Phys. Rev. A 41, 4 (1990).

https://doi.org/10.1103/PhysRevA.41.1990

S. Kambayashi and Y. Hiwatari, Mol. Simul. 12, 421 (1994).

https://doi.org/10.1080/08927029408023049

D.M. Heyes and J.G. Powles, Mol. Phys. 95, 259 (1998).

https://doi.org/10.1080/00268979809483158

J.H. Dymond, M. Rigby, and E.B. Smith, J. Chem. Phys. 48, 2801 (1965).

https://doi.org/10.1063/1.1703241

V.Yu. Bardic, N.P. Malomuzh, and V.M. Sysoev, J. of Mol. Liq. 120, Iss. 1-3, 27 (2005).

https://doi.org/10.1016/j.molliq.2004.07.020

V.Yu. Bardic, N.P. Malomuzh, K.S. Shakun, and V.M. Sysoev, J. of Mol. Liq. 127, 96 (2006).

https://doi.org/10.1016/j.molliq.2006.03.026

V.Yu. Bardic, L.A. Bulavin, N.P. Malomuzh, K.S. Shakun, and V.M. Sysoev, NATO Advanced Scientific Workshop, Soft Matter under Exogenic Impacts: Fundamentals and Emerging Technologies (Springer, Berlin, 2007), p. 339.

https://doi.org/10.1007/978-1-4020-5872-1_22

Downloads

Published

2012-06-30

How to Cite

Bardik, V., Nerukh, D., Pavlov, E., & Vlasyuk, M. (2012). Free Energy Functional Expansion as the Generalized Approach to the Equation of State of Dense Fluids. Ukrainian Journal of Physics, 57(6), 612. https://doi.org/10.15407/ujpe57.6.612

Issue

Section

Soft matter