Cyanine-Like and Polyenic Relaxation Paths of Merocyanine Derivatives of Malonodinitrile in the Excited State Detecting by Low Temperature Time-Resolved Fluorescence

Authors

  • M.M. Sevryukova Institute of Physics, Nat. Acad. of Sci. of Ukraine
  • Yu.P. Piryatinski Institute of Physics, Nat. Acad. of Sci. of Ukraine
  • S.V. Vasylyuk Taras Shevchenko National University of Kyiv
  • V.M. Yashchuk Taras Shevchenko National University of Kyiv, Faculty of Physics
  • O.O. Viniychuk Institute of Organic Chemistry, Nat. Acad. of Sci. of Ukraine
  • A.O. Gerasov Institute of Organic Chemistry, Nat. Acad. of Sci. of Ukraine
  • Yu.L. Slominskii Institute of Organic Chemistry, Nat. Acad. of Sci. of Ukraine
  • O.D. Kachkovsky Institute of Organic Chemistry, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe57.8.812

Keywords:

-

Abstract

The combined quantum-chemical and spectral study of features of the electron transitions in merocyanines is carried out. It is established that the two lowest transitions are split and involve both donor levels, similarly to symmetric cyanines. The long-wave absorption band has high intensity, while the second transition manifests itself only in the fluorescence excitation anisotropy spectra. In contrast to the ground state, the MO splitting in the excited state leads to the instability. The analysis of the results of theoretical and experimental studies enables us to propose that there are two paths of the relaxation in the excited state: a) cyanine-like one with equalizing the bond lengths; b) polyenic one with the considerable bond length alternation. This assumption is confirmed by the existence of two components in the time-resolved fluorescence spectra measured at low temperatures.

References

A. Mishra, R.K. Behera, P.K. Behera, B.K. Mishra, and G.B. Behera, Chem. Rev. 100, 1973 (2000).

https://doi.org/10.1021/cr990402t

F. Meyers, S.R. Marder, and J.W. Perry, Chemistry of Advanced Materials: An Overview, edited by L.V. Interrante and M.J. Hampden-Smith (Wiley-VCH, New York, 1998).

A.V. Kulinich and A.A. Ishchenko, Usp. Khimii 78, 151 (2009).

https://doi.org/10.1070/RC2009v078n02ABEH003900

Z.R. Grabowski, K. Rotkiewicz, and W. Rettig, Chem. Rev. 103, 3899 (2003).

https://doi.org/10.1021/cr940745l

P.Ch. Ray, Chem. Phys. Lett. 395, 269 (2004).

https://doi.org/10.1016/j.cplett.2004.07.095

A. Toutchkine, W.G. Han, M. Ullman, T. Lin, D. Bashford, L. Noodleman, and K.M. Hahn, J. Chem. Phys. A 111, 10849 (2007).

https://doi.org/10.1021/jp073197r

V.G. Nazarenko, Yu.P. Piryatinskii, A.D. Kachkovsky, E.I. Maiboroda, O.A. Zhukova, Yu.L. Slominskii, and A.I. Tolmachev, Teor. Eksp. Khim. 39, 201 (2003).

https://doi.org/10.1023/A:1025717228251

R.S. Lepkowich, O.V. Przhonska, J.M. Hales, D.J. Hagan, E.W. Van Sryland, M.V. Bondar, Yu.L. Slominski, and A.D. Kachkovski, Chem. Phys. 305, 259 (2004).

https://doi.org/10.1016/j.chemphys.2004.06.063

A.D. Kachkovski, A.I. Tolmachev, Yu.L. Slominski, M.A. Kudinova, N.A. Derevyanko, and O.O. Zhukova, Dyes Pigm. 64, 207 (2005).

https://doi.org/10.1016/j.dyepig.2004.04.003

S. Daehne, Science 199, 1163 (1978).

https://doi.org/10.1126/science.199.4334.1163

F. Meyers, S.R. Marder, J.W. Perry, and J.L. Bredas, J. Amer. Chem. Soc. 116, 10703 (1994).

https://doi.org/10.1021/ja00102a040

A.A. Ishchenko, A.V. Kulinich, S.L. Bondarev, and V.N. Krukshto, J. Phys. Chem. 111, 13629 (2007).

https://doi.org/10.1021/jp076016u

R. Lemke, Chem. Ber. 103, 1894 (1970).

https://doi.org/10.1002/cber.19701030628

R. Lemke, Synthesis, No.5, 359 (1974).

https://doi.org/10.1055/s-1974-23322

Y.P. Gnatenko, , Y.P. Piryatinski, P.M. Bukivskij, D.D. Kolendryckyj, O.A. Shigiltchoff, and R.V. Gamernyk, J. of Phys.: Cond. Mat. 18, 9603 (2006).

https://doi.org/10.1088/0953-8984/18/42/007

J.R. Lacowicz, Principles of Fluorescence Spectroscopy (Plenum, New York, 1983).

https://doi.org/10.1007/978-1-4615-7658-7

N.N. Tyutyulkov, A. Gochev, and F. Fratev, Chem. Phys. Lett. 26, 9 (1969).

https://doi.org/10.1016/0009-2614(69)85019-0

J. Fabian and R. Zahradnic, Wiss. Z. Techn. Univ. Dresden 26, 315 (1977).

M.J.S. Dewar, The Molecular Orbital Theory of Organic Chemistry (McGraw-Hill, New York, 1969).

S. Webster, J.Fu, L.P. Padilha, H.Hu, O.V. Przhonska, D.J. Hagan, E.W. Van Stryland, M.V. Bondar, Yu.L. Slominskii, and A.D. Kachkovsky, J. Luminescence 129, 1927 (2008). https://doi.org/10.1016/j.jlumin.2008.06.002

A.D. Kachkovsky, Dyes Pigm. 24, 171 (1994). https://doi.org/10.1016/0143-7208(94)80008-1

A.D. Kachkovsky, Usp. Khimii 66, 715 (1997).

E.F. McCoy and I.J. Ross, Austral. J. Chem. 15, 573 (1962). https://doi.org/10.1071/CH9620573

A.A. Ishchenko, Quant. Electr. 24, 471 (1994). https://doi.org/10.1070/QE1994v024n06ABEH000122

Downloads

Published

2012-08-30

How to Cite

Sevryukova, M., Piryatinski, Y., Vasylyuk, S., Yashchuk, V., Viniychuk, O., Gerasov, A., Slominskii, Y., & Kachkovsky, O. (2012). Cyanine-Like and Polyenic Relaxation Paths of Merocyanine Derivatives of Malonodinitrile in the Excited State Detecting by Low Temperature Time-Resolved Fluorescence. Ukrainian Journal of Physics, 57(8), 812. https://doi.org/10.15407/ujpe57.8.812

Issue

Section

Atoms and molecules

Most read articles by the same author(s)